论文标题
某些小组方案的完整结构
Full Level Structure on Some Group Schemes
论文作者
论文摘要
我们对表单$ g \ times g $的组方案进行了全级结构的定义,其中$ g $是$ \ mathbb {z} _p $ -scheme $ s $或更一般而言的有限平整的交换组计划,$ p $等级$ p $。我们表明,在所有有限的平面交换组方案的堆栈上,没有自然的概念。
We give a definition of full level structure on group schemes of the form $G\times G$, where $G$ is a finite flat commutative group scheme of rank $p$ over a $\mathbb{Z}_p$-scheme $S$ or, more generally, a truncated $p$-divisible group of height $1$. We show that there is no natural notion of full level structure over the stack of all finite flat commutative group schemes.