论文标题

社交机器人对话中的语音情绪和客户满意度估计

Speech Sentiment and Customer Satisfaction Estimation in Socialbot Conversations

论文作者

Kim, Yelin, Levy, Joshua, Liu, Yang

论文摘要

对于交互式代理,例如以任务为导向的口语对话框系统或聊天机器人,测量和适应客户满意度(CSAT)对于了解用户对代理人行为的看法并增加用户参与和保留至关重要。但是,代理通常依靠明确的客户反馈来测量CSAT。这种明确的反馈可能会导致对用户的潜在分散注意力,并且捕获不断改变用户的满意度可能会具有挑战性。为了应对这一挑战,我们提出了一种新的方法,可以使用Alexa Prive Socialbot数据中的声学和词汇信息自动估算CSAT。我们首先探索CSAT和情感分数之间的关系。然后,我们研究使用估计情感得分作为中级表示的静态和时间建模方法。结果表明,情感评分,尤其是价和满意度与CSAT相关。我们还证明,相对于静态基准和人类绩效,我们提出的用于估计CSAT的时间建模方法可实现竞争性能。这项工作为真实用户与社交机器人之间的开放域社交对话提供了见解,以及使用声学和词汇信息来理解CSAT和情感分数之间的关系。

For an interactive agent, such as task-oriented spoken dialog systems or chatbots, measuring and adapting to Customer Satisfaction (CSAT) is critical in order to understand user perception of an agent's behavior and increase user engagement and retention. However, an agent often relies on explicit customer feedback for measuring CSAT. Such explicit feedback may result in potential distraction to users and it can be challenging to capture continuously changing user's satisfaction. To address this challenge, we present a new approach to automatically estimate CSAT using acoustic and lexical information in the Alexa Prize Socialbot data. We first explore the relationship between CSAT and sentiment scores at both the utterance and conversation level. We then investigate static and temporal modeling methods that use estimated sentiment scores as a mid-level representation. The results show that the sentiment scores, particularly valence and satisfaction, are correlated with CSAT. We also demonstrate that our proposed temporal modeling approach for estimating CSAT achieves competitive performance, relative to static baselines as well as human performance. This work provides insights into open domain social conversations between real users and socialbots, and the use of both acoustic and lexical information for understanding the relationship between CSAT and sentiment scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源