论文标题
小关键指数的离散子组
Discrete subgroups of small critical exponent
论文作者
论文摘要
我们证明,具有较小关键指数的有限生成的较高维度的kleinian群体始终是凸起的。在此过程中,我们还证明了对关键指数小于1的任何完整捏合弯曲的歧管的几何特性。
We prove that finitely generated higher dimensional Kleinian groups with small critical exponent are always convex-cocompact. Along the way, we also prove some geometric properties for any complete pinched negatively curved manifold with critical exponent less than 1.