论文标题
在理性功能的正式半群上
On amenable semigroups of rational functions
论文作者
论文摘要
我们表征了一个复合变量的多项式的左右相对于组成操作的多项式。我们还证明了有关任意合理函数的可及半群的许多结果。特别是,我们表明,在相当一般的条件下,当且仅当它是某些有理函数的集中仪的子群时,有理理性函数的半元组可随时进行。
We characterize left and right amenable semigroups of polynomials of one complex variable with respect to the composition operation. We also prove a number of results about amenable semigroups of arbitrary rational functions. In particular, we show that under quite general conditions a semigroup of rational functions is left amenable if and only if it is a subsemigroup of the centralizer of some rational function.