论文标题
一般自主ODE系统的哈密顿形式:低维示例
Hamiltonian form for general autonomous ODE systems: Low dimensional examples
论文作者
论文摘要
纸是致力于维持一个简单的目标:我们希望为自主动力学系统提供可还原为偶数的自主动力系统的典范形式。沿着道路,我们构建了与传统第一积分具有不同特性的新的保守数量,称为有效保守的数量(例如,有效保守数量的差异是Pfaffian形式)。我们不将讨论仅限于物理学;我们考虑了生物学和化学的例子,为如何使框架参与发生的问题提供了直接的配方。给出了将来在几何数字方法中应用的透视图。
Paper is devoted to maintaining the simple objective: We want to provide Hamiltonian canonical form for autonomous dynamical system reducible to even-dimensional one. Along the road we construct new class of conserved quantities, called effectively conserved, that have dissimilar properties to traditional first integrals (e.g. differential of effectively conserved quantity being a Pfaffian form). We do not confine the discussion to physics; we consider examples from biology and chemistry, giving direct recipe for how to engage the framework in occurring problems. Perspective for future application in geometric numerical methods is given.