论文标题

如何使用行为修改“改善”预测

How to "Improve" Prediction Using Behavior Modification

论文作者

Shmueli, Galit, Tafti, Ali

论文摘要

许多收集行为大数据的互联网平台都使用它来预测内部目的的用户行为及其业务客户(例如,广告商,保险公司,安全部队,政府,政府,政治咨询公司),他们利用了个性化,定位和其他决策的预测。因此,提高预测精度非常有价值。数据科学研究人员设计了改善预测的算法,模型和方法。通过更大,更丰富的数据,还可以改善预测。除了改进算法和数据外,平台还可以使用行为修改技术将用户的行为推向其预测价值,从而偷偷摸摸地实现更好的预测准确性,从而证明了更多的某些预测。这种明显的“改进”预测可能是由于使用增强学习算法结合了预测和行为修改的。机器学习和统计文献中没有这种策略。研究其特性需要将因果关系与预测符号融合。为此,我们将Pearl的因果Do(。)运算符纳入预测词汇中。然后,我们分解了给定行为修改的预期预测误差,并确定影响预测能力的组件。我们的派生阐明了这种行为修改对被操纵行为的人类对数据科学家,平台,其客户和人类的影响。行为修改可以使用户的行为更加可预测,甚至更均匀;然而,当业务客户在实践中使用预测时,这种明显的可预测性可能不会推广。推动其预测的结果可能与客户的意图不符,并且对操纵用户有害。

Many internet platforms that collect behavioral big data use it to predict user behavior for internal purposes and for their business customers (e.g., advertisers, insurers, security forces, governments, political consulting firms) who utilize the predictions for personalization, targeting, and other decision-making. Improving predictive accuracy is therefore extremely valuable. Data science researchers design algorithms, models, and approaches to improve prediction. Prediction is also improved with larger and richer data. Beyond improving algorithms and data, platforms can stealthily achieve better prediction accuracy by pushing users' behaviors towards their predicted values, using behavior modification techniques, thereby demonstrating more certain predictions. Such apparent "improved" prediction can result from employing reinforcement learning algorithms that combine prediction and behavior modification. This strategy is absent from the machine learning and statistics literature. Investigating its properties requires integrating causal with predictive notation. To this end, we incorporate Pearl's causal do(.) operator into the predictive vocabulary. We then decompose the expected prediction error given behavior modification, and identify the components impacting predictive power. Our derivation elucidates implications of such behavior modification to data scientists, platforms, their customers, and the humans whose behavior is manipulated. Behavior modification can make users' behavior more predictable and even more homogeneous; yet this apparent predictability might not generalize when business customers use predictions in practice. Outcomes pushed towards their predictions can be at odds with customers' intentions, and harmful to manipulated users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源