论文标题
量子信息理论和量子组的傅立叶乘数
Quantum information theory and Fourier multipliers on quantum groups
论文作者
论文摘要
在本文中,我们计算最小输出熵的确切值以及作用于矩阵代数$ \ mathrm {m} _n $的非常大的量子通道的完全有限的最小熵。我们的新简单方法依赖于局部紧凑的量子组的理论,我们的结果使用了$ \ m atrm {l}^1(\ m athbb {g})$ to $ \ mathrm {l Mathrm {l}^p(\ mathbb {g} $ 1 <p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ p \ peftty,我们的结果使用了$ \ mathrm {l}^1(\ Mathbb {g})$的新的傅立叶乘数描述。该描述需要的这些乘法器的自动完全界限的本地紧凑型量子组。确实,我们的方法甚至允许在量子超级组上使用卷积运算符。这使我们能够将熵和能力的计算计算主题与子因素平面代数联系起来。我们还给出了每个被考虑的量子通道的经典能力的上限,这在交换案例中已经很敏锐。令人惊讶的是,我们通过直接计算观察到,一些傅立叶乘数可以将量子通道的经典示例(作为去除通道或去极化通道)的直接总和。确实,我们表明,对Unital Qubit通道的研究可以看作是Quaternion Group $ \ Mathbb {Q} _8 $的Von Neumann代数上傅立叶乘数理论的一部分。出乎意料的是,我们还将(量子)组的千古动作连接到该计算主题,从而使一些转移到其他渠道。我们还连接了Werner的量子谐波分析。最后,我们调查了纠缠破裂和$ \ mathrm {ppt} $傅立叶乘数,我们表征了有条件的期望,这些期望正在纠缠中断。
In this paper, we compute the exact values of the minimum output entropy and the completely bounded minimal entropy of very large classes of quantum channels acting on matrix algebras $\mathrm{M}_n$. Our new and simple approach relies on the theory of locally compact quantum groups and our results use a new and precise description of bounded Fourier multipliers from $\mathrm{L}^1(\mathbb{G})$ into $\mathrm{L}^p(\mathbb{G})$ for $1 < p \leq \infty$ where $\mathbb{G}$ is a co-amenable locally compact quantum group and on the automatic completely boundedness of these multipliers that this description entails. Indeed, our approach even allows to use convolution operators on quantum hypergroups. This enable us to connect equally the topic of computation of entropies and capacities to subfactor planar algebras. We also give a upper bound of the classical capacity of each considered quantum channel which is already sharp in the commutative case. Quite surprisingly, we observe by direct computations that some Fourier multipliers identifies to direct sums of classical examples of quantum channels (as dephasing channel or depolarizing channels). Indeed, we show that the study of unital qubit channels can be seen as a part of the theory of Fourier multipliers on the von Neumann algebra of the quaternion group $\mathbb{Q}_8$. Unexpectedly, we also connect ergodic actions of (quantum) groups to this topic of computation, allowing some transference to other channels. We also connect the Quantum Harmonic analysis of Werner. Finally, we investigate entangling breaking and $\mathrm{PPT}$ Fourier multipliers and we characterize conditional expectations which are entangling breaking.