论文标题
能认知:通过对比增强的CT成像的胰腺癌存活和手术缘的术前预测
DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin via Contrast-Enhanced CT Imaging
论文作者
论文摘要
胰腺导管腺癌(PDAC)是最致命的癌症之一,具有令人沮丧的预后。对于有资格初次切除PDAC的患者,手术仍然是治愈的最佳机会。但是,即使在同一阶段的切除的患者中,结果也有很大差异,并接受了类似的治疗方法。因此,高度需要对个性化治疗的可切除PDAC进行准确的术前预后。然而,尚无自动化方法来完全利用PDAC的对比度增强计算机断层扫描(CE-CT)成像。不同CT相之间的肿瘤衰减变化可以反映可能影响临床结局的个体肿瘤的肿瘤内部基质级分和血管化。在这项工作中,我们提出了一个新型的深层神经网络,用于可切除的PDAC患者的生存预测,称为3D对比增强卷积长期短期记忆网络(CE-CONVLSTM),可以从CE-CT成像研究中得出肿瘤衰减特征或模式。我们提出了一个多任务CNN,以完成结果和边距预测任务,其中网络受益于学习肿瘤切除余量相关的特征以改善生存预测。与现有的最新生存分析方法相比,提出的框架可以改善预测性能。根据我们的模型构建的肿瘤特征显然增加了值,以与现有的临床分期系统结合使用。
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and carries a dismal prognosis. Surgery remains the best chance of a potential cure for patients who are eligible for initial resection of PDAC. However, outcomes vary significantly even among the resected patients of the same stage and received similar treatments. Accurate preoperative prognosis of resectable PDACs for personalized treatment is thus highly desired. Nevertheless, there are no automated methods yet to fully exploit the contrast-enhanced computed tomography (CE-CT) imaging for PDAC. Tumor attenuation changes across different CT phases can reflect the tumor internal stromal fractions and vascularization of individual tumors that may impact the clinical outcomes. In this work, we propose a novel deep neural network for the survival prediction of resectable PDAC patients, named as 3D Contrast-Enhanced Convolutional Long Short-Term Memory network(CE-ConvLSTM), which can derive the tumor attenuation signatures or patterns from CE-CT imaging studies. We present a multi-task CNN to accomplish both tasks of outcome and margin prediction where the network benefits from learning the tumor resection margin related features to improve survival prediction. The proposed framework can improve the prediction performances compared with existing state-of-the-art survival analysis approaches. The tumor signature built from our model has evidently added values to be combined with the existing clinical staging system.