论文标题

细胞聚集体界面极化的分数随机理论

A fractional stochastic theory for interfacial polarization of cell aggregates

论文作者

Mistani, Pouria A., Pakravan, Samira, Gibou, Frederic G.

论文摘要

我们提出了一个理论框架,以模拟细胞聚集体的电响应。我们为每个细胞建立一个粗糙的表示,作为膜和细胞质偶极矩的组合。然后,我们计算所得系统的有效电导率,然后得出fokker-Planck偏微分方程,该方程捕获了诱导细胞整体中诱导细胞极化分布的时间依赖性演变。我们的模型预测,平行于施加的脉冲的极化密度遵循偏斜的T分布,而横向极化密度遵循对称的T分布,与我们的直接数值模拟相符。此外,我们报告了由一对耦合的普通微分方程对描述的降低订单模型,该方程将重现聚集体中诱导偶极矩的平均值和方差。我们通过考虑分数阶时间衍生物来扩展我们提出的公式,我们认为必要解释在实验中观察到的异常弛豫现象以及我们的直接数值模拟。由于其时间域的配方,我们的框架可以轻松地用于考虑在几种科学,医学和技术应用中出现的非线性膜效应或细胞间耦合。

We present a theoretical framework to model the electric response of cell aggregates. We establish a coarse representation for each cell as a combination of membrane and cytoplasm dipole moments. Then we compute the effective conductivity of the resulting system, and thereafter derive a Fokker-Planck partial differential equation that captures the time-dependent evolution of the distribution of induced cellular polarizations in an ensemble of cells. Our model predicts that the polarization density parallel to an applied pulse follows a skewed t-distribution, while the transverse polarization density follows a symmetric t-distribution, which are in accordance with our direct numerical simulations. Furthermore, we report a reduced order model described by a coupled pair of ordinary differential equations that reproduces the average and the variance of induced dipole moments in the aggregate. We extend our proposed formulation by considering fractional order time derivatives that we find necessary to explain anomalous relaxation phenomena observed in experiments as well as our direct numerical simulations. Owing to its time-domain formulation, our framework can be easily used to consider nonlinear membrane effects or intercellular couplings that arise in several scientific, medical and technological applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源