论文标题
纠缠式域墙壁墙壁
Entanglement bootstrap approach for gapped domain walls
论文作者
论文摘要
我们在两个空间维度的拓扑排序系统之间开发了一个间隙域壁的理论。我们发现了一种新型的超选择扇区(称为Parton部门),该部门细分了已知的超选择扇区,该部门局部位于间隙域壁上。此外,我们介绍和研究由Parton部门制成的复合超选择部门的性质。我们通过得出将其量子维度和融合多重性的非平凡身份来解释一种系统的方法来定义这些扇区,它们的融合空间及其融合规则。我们提出了一组有关系统的基态纠缠熵的公理,该系统可以容纳间隙域壁,从而推广了[B中提出的大容量公理Shi,K。Kato和I. H. Kim,Ann。物理。 418,168164(2020)]。与我们在批量分析中的分析相似,我们通过检查称为信息凸集的对象的自洽关系来得出我们的主要结果。作为一种应用,我们定义了一个拓扑纠缠熵的类似物,用于间隙域壁并得出其确切的表达。
We develop a theory of gapped domain wall between topologically ordered systems in two spatial dimensions. We find a new type of superselection sector -- referred to as the parton sector -- that subdivides the known superselection sectors localized on gapped domain walls. Moreover, we introduce and study the properties of composite superselection sectors that are made out of the parton sectors. We explain a systematic method to define these sectors, their fusion spaces, and their fusion rules, by deriving nontrivial identities relating their quantum dimensions and fusion multiplicities. We propose a set of axioms regarding the ground state entanglement entropy of systems that can host gapped domain walls, generalizing the bulk axioms proposed in [B. Shi, K. Kato, and I. H. Kim, Ann. Phys. 418, 168164 (2020)]. Similar to our analysis in the bulk, we derive our main results by examining the self-consistency relations of an object called information convex set. As an application, we define an analog of topological entanglement entropy for gapped domain walls and derive its exact expression.