论文标题

量子LIFSHITZ点和波动诱导的Fermi混合物中的一阶相变

Quantum Lifshitz points and fluctuation-induced first-order phase transitions in imbalanced Fermi mixtures

论文作者

Zdybel, Piotr, Jakubczyk, Pawel

论文摘要

我们对自旋和质量感染的费米混合物中均匀的超流体和正常相之间的相变进行了详细的分析。在平均场级别,我们证明在温度$ t \至0 $下,有效动作中的梯度项可以调整为零,以换取实验相关的参数集,从而提供了实现量子Lifshitz点的途径。随后,我们分析了影响整个相变的订单参数场的阻尼过程。我们表明,在低能极限中,Landau阻尼仅发生在对称性阶段,并且仅影响订单参数场的纵向成分。但是,它不可避免地存在于温度$ t = 0 $的相变附近。随后,我们在某种情况下对系统进行了重新归一化组分析,在这种情况下,在平均场水平下,量子相变是二阶(而不是多政治)。我们发现,在$ t $的情况下,包括从微观动作得出的形式的Landau阻尼项,使重新归一化的组流向Wilson-Fisher固定点。这表明通过订单参数波动与兰道阻尼有效捕获的费米子激发之间的耦合在订单参数作用有效捕获的效率上,可能会驱动过渡弱的一阶弱趋势。

We perform a detailed analysis of the phase transition between the uniform superfluid and normal phases in spin- and mass-imbalanced Fermi mixtures. At mean-field level we demonstrate that at temperature $T\to 0$ the gradient term in the effective action can be tuned to zero for experimentally relevant sets of parameters, thus providing an avenue to realize a quantum Lifshitz point. We subsequently analyze damping processes affecting the order-parameter field across the phase transition. We show that, in the low energy limit, Landau damping occurs only in the symmetry-broken phase and affects exclusively the longitudinal component of the order-parameter field. It is however unavoidably present in the immediate vicinity of the phase transition at temperature $T=0$. We subsequently perform a renormalization-group analysis of the system in a situation, where, at mean-field level, the quantum phase transition is second order (and not multicritical). We find that, at $T$ sufficiently low, including the Landau damping term in a form derived from the microscopic action destabilizes the renormalization group flow towards the Wilson-Fisher fixed point. This signals a possible tendency to drive the transition weakly first-order by the coupling between the order-parameter fluctuations and fermionic excitations effectively captured by the Landau damping contribution to the order-parameter action.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源