论文标题

2D Quasiperiodic Potts模型中的量子关键性

Quantum criticality in the 2d quasiperiodic Potts model

论文作者

Agrawal, Utkarsh, Gopalakrishnan, Sarang, Vasseur, Romain

论文摘要

准二元磁铁中的量子关键点可以实现新的通用类别,其关键特性与清洁或无序系统的特性不同。在这里,我们研究了在$ 2+1d $中分离出Quasiperiodic $ Q $ - 状态POTTS模型中铁磁和顺磁相的量子相变。使用受控的真实空间重新归一化组方法,我们发现临界行为主要与$ Q $无关,并且由无限 - quasiperiodicity固定点控制。发现相关长度指数为$ν= 1 $,使Harris-Luck标准的修改版本饱和。

Quantum critical points in quasiperiodic magnets can realize new universality classes, with critical properties distinct from those of clean or disordered systems. Here, we study quantum phase transitions separating ferromagnetic and paramagnetic phases in the quasiperiodic $q$-state Potts model in $2+1d$. Using a controlled real-space renormalization group approach, we find that the critical behavior is largely independent of $q$, and is controlled by an infinite-quasiperiodicity fixed point. The correlation length exponent is found to be $ν=1$, saturating a modified version of the Harris-Luck criterion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源