论文标题

每个部分都很重要:本地模式有助于跨视图地理位置定位

Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization

论文作者

Wang, Tingyu, Zheng, Zhedong, Yan, Chenggang, Zhang, Jiyong, Sun, Yaoqi, Zheng, Bolun, Yang, Yi

论文摘要

跨视图地理位置定位是从不同平台(例如无人机视图摄像机和卫星)发现相同地理目标的图像。在极端观点变化引起的大型视觉外观变化中,这具有挑战性。现有方法通常集中于挖掘图像中心地理目标的细粒度特征,但低估了邻居区域中的上下文信息。在这项工作中,我们认为可以将邻居区域作为辅助信息利用,从而丰富了地理定位的歧视性线索。具体而言,我们引入了一个简单有效的深度神经网络,称为本地模式网络(LPN),以端到端的方式利用上下文信息。 LPN在不使用额外的零件估计器的情况下采用了方形的特征分区策略,该策略根据到达图像中心的距离提供了关注。它可以简化匹配的零件并启用部分表示。由于方形分区设计,提出的LPN具有良好的旋转变化可扩展性,并在三个主要的基准测试(即大学1652,CVUSA和CVACT)上取得了竞争成果。此外,我们还显示提出的LPN可以很容易地嵌入其他框架中,以进一步提高性能。

Cross-view geo-localization is to spot images of the same geographic target from different platforms, e.g., drone-view cameras and satellites. It is challenging in the large visual appearance changes caused by extreme viewpoint variations. Existing methods usually concentrate on mining the fine-grained feature of the geographic target in the image center, but underestimate the contextual information in neighbor areas. In this work, we argue that neighbor areas can be leveraged as auxiliary information, enriching discriminative clues for geolocalization. Specifically, we introduce a simple and effective deep neural network, called Local Pattern Network (LPN), to take advantage of contextual information in an end-to-end manner. Without using extra part estimators, LPN adopts a square-ring feature partition strategy, which provides the attention according to the distance to the image center. It eases the part matching and enables the part-wise representation learning. Owing to the square-ring partition design, the proposed LPN has good scalability to rotation variations and achieves competitive results on three prevailing benchmarks, i.e., University-1652, CVUSA and CVACT. Besides, we also show the proposed LPN can be easily embedded into other frameworks to further boost performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源