论文标题
对神经形态研究芯片loihi的机器人控制的强大轨迹生成
Robust trajectory generation for robotic control on the neuromorphic research chip Loihi
论文作者
论文摘要
与冯·诺伊曼(Von Neumann)体系结构相比,神经形态硬件具有几个有希望的优势,并且在机器人控制方面非常有趣。但是,尽管神经形态计算具有高速和能源效率,但在控制方案中利用这种硬件的算法仍然很少见。一个问题是从硬件上的快速尖峰活动的过渡,该活动的作用在几毫秒的时间范围内,再到与数百毫秒的订单相关的时间尺度。另一个问题是执行复杂的轨迹,该轨迹需要尖峰活动以包含足够的可变性,而同时为了可靠的性能,网络动力学必须具有足够的稳定性,以抵抗噪声。在这项研究中,我们利用了最近开发的生物学启发的尖峰神经网络模型,即所谓的各向异性网络。我们使用英特尔的神经形态研究芯片loihi确定并将各向异性网络的核心原理转移到了神经硬件,并验证了该系统对机器人组执行的运动控制任务的轨迹。我们开发了一个网络体系结构,包括各向异性网络和一个合并层,该层允许从芯片中快速读取并执行固有的正则化。因此,我们表明,Loihi上的各向异性网络可靠地编码神经活动的顺序模式,每个模式代表机器人动作,并且这些模式允许在控制相关时间表上产生多维轨迹。综上所述,我们的研究提出了一种新的算法,该算法允许使用最先进的神经形态硬件来生成复杂的机器人运动作为机器人控制的基础。
Neuromorphic hardware has several promising advantages compared to von Neumann architectures and is highly interesting for robot control. However, despite the high speed and energy efficiency of neuromorphic computing, algorithms utilizing this hardware in control scenarios are still rare. One problem is the transition from fast spiking activity on the hardware, which acts on a timescale of a few milliseconds, to a control-relevant timescale on the order of hundreds of milliseconds. Another problem is the execution of complex trajectories, which requires spiking activity to contain sufficient variability, while at the same time, for reliable performance, network dynamics must be adequately robust against noise. In this study we exploit a recently developed biologically-inspired spiking neural network model, the so-called anisotropic network. We identified and transferred the core principles of the anisotropic network to neuromorphic hardware using Intel's neuromorphic research chip Loihi and validated the system on trajectories from a motor-control task performed by a robot arm. We developed a network architecture including the anisotropic network and a pooling layer which allows fast spike read-out from the chip and performs an inherent regularization. With this, we show that the anisotropic network on Loihi reliably encodes sequential patterns of neural activity, each representing a robotic action, and that the patterns allow the generation of multidimensional trajectories on control-relevant timescales. Taken together, our study presents a new algorithm that allows the generation of complex robotic movements as a building block for robotic control using state of the art neuromorphic hardware.