论文标题

关于动机振荡指数和指数和通过分析同构的指数和指数额的限制

On the motivic oscillation index and bound of exponential sums modulo $p^m$ via analytic isomorphisms

论文作者

Nguyen, Kien Huu, Veys, Willem

论文摘要

让$ f $是某些数字字段的$ n $变量中的多项式,而$ z $ a grodine $ n $空加的子cheme。 Cluckers(2008)和Cluckers-Mustaţǎ-Nguyen(2019)发起了$ Z $ $ f $的动机振荡指数的概念。在本文中,我们详细阐述了这一概念,并提出了几个问题。第一个是基本场扩展下的稳定性;这个问题与对非Archimedean本地领域的密度有深刻的了解有关,Igusa的本地Zeta功能$ f $具有具有实际部分的极点。第二个是围绕Igusa对指数总和的猜想,并在动机振荡指数方面具有界限。第三,我们想知道以上问题是否仅取决于分析性奇异性类别。通过使用各种技术作为GAGA定理,奇异性和模型理论的解决,我们可以回答第三个问题,直到基本场扩展。接下来,通过在特征零和积极特征的非架构本地领域之间使用转移原理,我们可以将所有三个问题与$ \ ell $ ad-aidic-adic共同研究的构想组成的Artin-Schreier滑轮相关的$ \ ell $ - ad-adic共同研究组之间的猜想。这样,如果$ f $是托姆 - 塞巴斯蒂安尼(Thom-Sebastiani)类型的多项式,我们可以积极回答所有问题。结果,我们证明了Igusa对三个变量和多项式的任意多项式的猜想,其奇异性为$ ade $ type。在附录中,我们肯定地回答了Cluckers-Mustaţǎ-Nguyen(2019)关于扭曲Igusa局部Zeta最大秩序功能的问题。

Let $f$ be a polynomial in $n$ variables over some number field and $Z$ a subscheme of affine $n$-space. The notion of motivic oscillation index of $f$ at $Z$ was initiated by Cluckers (2008) and Cluckers-Mustaţǎ-Nguyen (2019). In this paper we elaborate on this notion and raise several questions. The first one is stability under base field extension; this question is linked to a deep understanding of the density of non-archimedean local fields over which Igusa's local zeta functions of $f$ has a pole with given real part. The second one is around Igusa's conjecture for exponential sums with bounds in terms of the motivic oscillation index. Thirdly, we wonder if the above questions only depend on the analytic isomorphism class of singularities. By using various techniques as the GAGA theorem, resolution of singularities and model theory, we can answer the third question up to a base field extension. Next, by using a transfer principle between non-archimedean local fields of characteristic zero and positive characteristic, we can link all three questions with a conjecture on weights of $\ell$-adic cohomology groups of Artin-Schreier sheaves associated to jet polynomials. This way, we can answer all questions positively if $f$ is a polynomial of Thom-Sebastiani type with non-rational singularities. As a consequence, we prove Igusa's conjecture for arbitrary polynomials in three variables and polynomials with singularities of $ADE$ type. In an appendix, we answer affirmatively a recent question of Cluckers-Mustaţǎ-Nguyen (2019) on poles of twisted Igusa's local zeta functions of maximal order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源