论文标题
使用同步波形测量在分配网络中分析事件原因
Event Cause Analysis in Distribution Networks using Synchro Waveform Measurements
论文作者
论文摘要
本文提出了一种用于事件原因分析的机器学习方法,以增强分销网络中的情境意识。使用时间同步的高采样率同步波形测量单元(SWMU)捕获数据流。提出的方法是根据机器学习方法(卷积神经网络(CNN))制定的。该方法能够有效地捕获测量的时空特征并执行事件原因分析。本文考虑了几个事件,以涵盖实际分销网络中的一系列可能事件,包括电容器库切换,变压器能量,故障和高阻抗故障(HIF)。我们的研究数据集是使用实时数字模拟器(RTD)生成的,以模拟现实世界中的事件。事件原因分析仅在检测到事件后仅使用电压波形的一个循环进行。模拟结果表明,与最新的分类器相比,提出的基于机器学习的方法的有效性。
This paper presents a machine learning method for event cause analysis to enhance situational awareness in distribution networks. The data streams are captured using time-synchronized high sampling rates synchro waveform measurement units (SWMU). The proposed method is formulated based on a machine learning method, the convolutional neural network (CNN). This method is capable of capturing the spatiotemporal feature of the measurements effectively and perform the event cause analysis. Several events are considered in this paper to encompass a range of possible events in real distribution networks, including capacitor bank switching, transformer energization, fault, and high impedance fault (HIF). The dataset for our study is generated using the real-time digital simulator (RTDS) to simulate real-world events. The event cause analysis is performed using only one cycle of the voltage waveforms after the event is detected. The simulation results show the effectiveness of the proposed machine learning-based method compared to the state-of-the-art classifiers.