论文标题

谐波和谐波椭圆映射的部分衍生物的规范估计值

Norm estimates of the partial derivatives for harmonic and harmonic elliptic mappings

论文作者

Chen, Sh., Ponnusamy, S., Wang, X.

论文摘要

令$ f = p [f] $表示单位磁盘$ \ mathbb {d} $中$ f $的泊松积分,$ f $在单位圈$ \ mathbb {t} $和$ \ dot {f} $ in l_p(0,2π)$中绝对连续$ \ dot {f}(e^{it})= \ frac {d} {dt} f(e^{it})$和$ p \ geq 1 $。最近,\ cite {zhu}中的作者证明了$(1)$如果$ f $是谐波映射,$ 1 \ leq p <2 $,则$ f_ {z {z {z} $和$ \ overline {f _ {\ edimallline $ \ mathbb {d} $ \ cite [theorem 1.2] {zhu}的伯格曼空间; $(2)$如果$ f $是谐音准确映射,$ 1 \ leq p \ leq \ leq \ infty $,则$ f_ {z {z {z {z {z {f _ {f _ {\ overline {z}}}}} \ in \ Mathcal {h} $ \ mathbb {d} $ \ cite [theorem 1.3] {zhu}。这些是\ cite {zhu}的主要结果。本文的目的是概括这两个结果。首先,我们证明,在相同的假设下,当$ 1 \ leq p <\ infty $时,\ cite [theorem 1.2] {zhu}是正确的。另外,我们证明\ cite [theorem 1.2] {zhu}当$ p = \ infty $时不正确。其次,我们证明\ cit [theorem 1.3] {zhu}仍然是正确的,当假设$ f $作为谐波的quasiregular映射被较弱的一个$ f $作为谐波椭圆形映射所取代。

Let $f = P[F]$ denote the Poisson integral of $F$ in the unit disk $\mathbb{D}$ with $F$ being absolutely continuous in the unit circle $\mathbb{T}$ and $\dot{F}\in L_p(0, 2π)$, where $\dot{F}(e^{it})=\frac{d}{dt} F(e^{it})$ and $p\geq 1$. Recently, the author in \cite{Zhu} proved that $(1)$ if $f$ is a harmonic mapping and $1\leq p< 2$, then $f_{z}$ and $\overline{f_{\overline{z}}}\in \mathcal{B}^{p}(\mathbb{D}),$ the classical Bergman spaces of $\mathbb{D}$ \cite[Theorem 1.2]{Zhu}; $(2)$ if $f$ is a harmonic quasiregular mapping and $1\leq p\leq \infty$, then $f_{z},$ $\overline{f_{\overline{z}}}\in \mathcal{H}^{p}(\mathbb{D}),$ the classical Hardy spaces of $\mathbb{D}$ \cite[Theorem 1.3]{Zhu}. These are the main results in \cite{Zhu}. The purpose of this paper is to generalize these two results. First, we prove that, under the same assumptions, \cite[Theorem 1.2]{Zhu} is true when $1\leq p< \infty$. Also, we show that \cite[Theorem 1.2]{Zhu} is not true when $p=\infty$. Second, we demonstrate that \cite[Theorem 1.3]{Zhu} still holds true when the assumption $f$ being a harmonic quasiregular mapping is replaced by the weaker one $f$ being a harmonic elliptic mapping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源