论文标题

分数结构稳定性:配方和应用细长结构的临界负载

Fractional-Order Structural Stability: Formulation and Application to the Critical Load of Slender Structures

论文作者

Sidhardh, Sai, Patnaik, Sansit, Semperlotti, Fabio

论文摘要

这项研究介绍了对非本地固体进行稳定分析的框架,该固体根据分数连续理论对响应进行了响应。在此公式中,空间分数运算符用于通过引入非局部运动关系来捕获培养基的非局部响应。首先,我们在基于能量的方法中使用几何非线性分数运动关系,以建立针对分数非局部结构的Lagrange-Dirichlet稳定性标准。这种基于能量的非局部结构稳定性方法是可能的,这是由于原定的正常和热力学一致的定义,该定义是由分数级运动学公式启用的变形能的定义。然后,针对线性屈曲条件得出了临界负载的雷利 - 里兹系数。最终,使用专用的分数有限元元素求解器来确定细长非局部光束和板的关键屈曲载荷。结果表明,与现有研究相比,使用分数 - 阶 - 使用分数运动学方法时,观察到非局部相互作用的影响。我们在案例研究的帮助下进行定量支持这些观察结果,重点是分数非本地细长结构的关键屈曲响应,并通过直接比较分数方法与经典的非局部方法进行定性比较。

This study presents the framework to perform a stability analysis of nonlocal solids whose response is formulated according to the fractional-order continuum theory. In this formulation, space fractional-order operators are used to capture the nonlocal response of the medium by introducing nonlocal kinematic relations. First, we use the geometrically nonlinear fractional-order kinematic relations within an energy-based approach to establish the Lagrange-Dirichlet stability criteria for fractional-order nonlocal structures. This energy-based approach to nonlocal structural stability is possible due to a positive-definite and thermodynamically consistent definition of deformation energy enabled by the fractional-order kinematic formulation. Then, the Rayleigh-Ritz coefficient for the critical load is derived for linear buckling conditions. The fractional-order formulation is finally used to determine critical buckling loads of slender nonlocal beams and plates using a dedicated fractional-order finite element solver. Results establish that, in contrast to existing studies, the effect of nonlocal interactions is observed on both the material and the geometric stiffness, when using the fractional-order kinematics approach. We support these observations quantitatively with the help of case studies focusing on the critical buckling response of fractional-order nonlocal slender structures, and qualitatively via direct comparison of the fractional-order approach with the classical nonlocal approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源