论文标题
张量网络可以解决费米表面
Tensor Networks Can Resolve Fermi Surfaces
论文作者
论文摘要
我们证明,预计的纠缠pair状态(PEPS)能够代表关键的,费米子系统的基态,在2D晶格上表现出1D和0D费米表面,并具有有效的键尺寸尺寸。推断有限尺寸的结果是高斯限制了对费米的纠缠态态至热力学极限的结果,发现能量精度作为键尺寸的函数可以改善作为功率定律,以说明可以通过以控制的方式增加键键来获得任意精度。在此过程中,必须仔细选择边界条件和系统尺寸,以便避免植根于其非平凡拓扑的ANSATZ的非分析性。
We demonstrate that projected entangled-pair states (PEPS) are able to represent ground states of critical, fermionic systems exhibiting both 1d and 0d Fermi surfaces on a 2D lattice with an efficient scaling of the bond dimension. Extrapolating finite size results for the Gaussian restriction of fermionic projected entangled-pair states to the thermodynamic limit, the energy precision as a function of the bond dimension is found to improve as a power law, illustrating that an arbitrary precision can be obtained by increasing the bond dimension in a controlled manner. In this process, boundary conditions and system sizes have to be chosen carefully so that nonanalyticities of the Ansatz, rooted in its nontrivial topology, are avoided.