论文标题
未来的全球变暖预感有多不祥?
How Ominous is the Future Global Warming Premonition?
论文作者
论文摘要
全球变暖是近几十年来全球平均温度升高的现象,由于其对气候的严重不利影响,人们引起了广泛的关注。即使将来,全球变暖是否会继续,这是一个最重要的调查问题。在这方面,所谓的一般循环模型(GCM)试图投射未来的气候,几乎所有的气候都表现出令人震惊的全球温度升高。 尽管当前时间范围内的全球变暖是不可否认的,但评估GCM的未来预测的有效性很重要。在本文中,我们尝试使用我们最近开发的贝叶斯多重测试范例进行反向回归问题中的模型选择的研究。我们对全球温度时间序列假设的模型基于黑匣子方案的高斯过程仿真,实际上将时间序列的动态演变视为未知的动态演变。 我们将我们的想法应用于来自政府间气候变化小组(IPCC)网站的数据集。当我们的方法对未来气候变化方案的不同假设中选择的最佳GCM模型在只有将来的预测被认为是已知的时,并不能令人信服地支持当前的全球变暖模式。使用我们的高斯过程想法,我们还预测了当前的温度时间序列。有趣的是,我们的结果不支持几乎所有GCM模型预测的急剧未来的全球变暖。
Global warming, the phenomenon of increasing global average temperature in the recent decades, is receiving wide attention due to its very significant adverse effects on climate. Whether global warming will continue even in the future, is a question that is most important to investigate. In this regard, the so-called general circulation models (GCMs) have attempted to project the future climate, and nearly all of them exhibit alarming rates of global temperature rise in the future. Although global warming in the current time frame is undeniable, it is important to assess the validity of the future predictions of the GCMs. In this article, we attempt such a study using our recently-developed Bayesian multiple testing paradigm for model selection in inverse regression problems. The model we assume for the global temperature time series is based on Gaussian process emulation of the black box scenario, realistically treating the dynamic evolution of the time series as unknown. We apply our ideas to datasets available from the Intergovernmental Panel on Climate Change (IPCC) website. The best GCM models selected by our method under different assumptions on future climate change scenarios do not convincingly support the present global warming pattern when only the future predictions are considered known. Using our Gaussian process idea, we also forecast the future temperature time series given the current one. Interestingly, our results do not support drastic future global warming predicted by almost all the GCM models.