论文标题

使用以下带隙激光照射和低温热退火的4小时碳化硅中的硅胶偶联增强的腔耦合

Enhanced cavity coupling to silicon monovacancies in 4-H Silicon Carbide using below bandgap laser irradiation and low temperature thermal annealing

论文作者

Gadalla, Mena N., Greenspon, Andrew S., Defo, Rodrick Kuate, Zhang, Xingyu, Hu, Evelyn L.

论文摘要

带负电荷的硅单处理$ v_ {si}^ - $ 4h-silicon碳化物(SIC)是一种自旋激活点缺陷,有可能在固态量子计算应用中充当量子或量子存储器。光子晶体腔(PCC)可以增强$ v_ {si}^ - $的光学发射,但是对缺陷型腔体相互作用进行微调仍然具有挑战性。我们报告了两个结合后的过程,从我们的一维PCC提高了$ v_1^{'} $光学排放,这表明硅位置空位和PCC的合奏之间的耦合改善了。一个过程涉及在785 nm和532 nm波长和325 nm的带隙照明处的带隙照明下,有时在几分钟到几个小时不等。另一个过程是在20分钟内进行的$ 100^o C $的热退火。除上述频带辐照以外的每个过程都改善了缺陷 - 腔耦合,该耦合体现在77K处的$ v_1^{'} $ Zero Zero phonon线的增强purcell因子增强。下面的频段gap激光过程归因于电荷状态的修改,将相对比例更改为$ v_ {si}^0 $(深色状态)为$ v_ {si}^ - $(明亮的状态),而热退火过程可以通过碳固化的扩散来解释,随后又有其他下降的3 $ v_ {si}^ - $ s。提议上面提议将$ v_ {si}^{0} $转换为$ v_ {si}^ - $,但也可能导致$ v_ {si}^ - $从探测区域扩散,从而导致光学信号的不可逆减少。对PCC光谱的观察可以深入了解受控,指定体积中的缺陷修改和相互作用,并指示改善缺陷型腔相互作用的途径。

The negatively charged silicon monovacancy $V_{Si}^-$ in 4H-silicon carbide (SiC) is a spin-active point defect that has the potential to act as a qubit or quantum memory in solid-state quantum computation applications. Photonic crystal cavities (PCCs) can augment the optical emission of the $V_{Si}^-$, yet fine-tuning the defect-cavity interaction remains challenging. We report on two post-fabrication processes that result in enhancement of the $V_1^{'}$ optical emission from our 1-dimensional PCCs, indicating improved coupling between the ensemble of silicon vacancies and the PCC. One process involves below bandgap illumination at 785 nm and 532 nm wavelengths and above bandgap illumination at 325 nm, carried out at times ranging from a few minutes to several hours. The other process is thermal annealing at $100^o C$, carried out over 20 minutes. Every process except above bandgap irradiation improves the defect-cavity coupling, manifested in augmented Purcell factor enhancement of the $V_1^{'}$ zero phonon line at 77K. The below bandgap laser process is attributed to a modification of charge states, changing the relative ratio of $V_{Si}^0$ (dark state) to $V_{Si}^-$ (bright state), while the thermal annealing process may be explained by diffusion of carbon interstitials, $C_i$, that subsequently recombine with other defects to create additional $V_{Si}^-$s. Above bandgap radiation is proposed to initially convert $V_{Si}^{0}$ to $V_{Si}^-$, but also may lead to diffusion of $V_{Si}^-$ away from the probe area, resulting in an irreversible reduction of the optical signal. Observations of the PCC spectra allow insights into defect modifications and interactions within a controlled, designated volume and indicate pathways to improve defect-cavity interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源