论文标题
相关绝缘子的电子结构的超快修饰
Ultrafast modification of the electronic structure of a correlated insulator
论文作者
论文摘要
库仑排斥和运动学效应之间的非平凡平衡决定了相关电子材料的电子结构。使用电磁场足以与这些天然微观相互作用竞争的电磁场使我们能够研究电子响应以及使用量子效应进行可能应用的时间尺度和能量。我们使用元素特异性的瞬态X射线吸收光谱和高谐波生成来测量原型相关电子绝缘子NIO中对超持有异常光场的响应。令人惊讶的是,高达0.22 v/Å的字段导致与先前预测相反的相关Ni 3D轨道上没有可检测到的变化。发现了瞬态定向电荷转移,这种行为是由第一原理理论捕获的。我们的结果强调了延迟效应在电子筛选中的重要性,并指出了在功能化超快设备操作的相关材料方面的关键挑战。
A non-trivial balance between Coulomb repulsion and kinematic effects determines the electronic structure of correlated electron materials. The use electromagnetic fields strong enough to rival these native microscopic interactions allows us to study the electronic response as well as the timescales and energies involved in using quantum effects for possible applications. We use element-specific transient x-ray absorption spectroscopy and high-harmonic generation to measure the response to ultrashort off-resonant optical fields in the prototypical correlated electron insulator NiO. Surprisingly, fields of up to 0.22 V/Å leads to no detectable changes on the correlated Ni 3d-orbitals contrary to previous predictions. A transient directional charge transfer is uncovered, a behavior that is captured by first-principles theory. Our results highlight the importance of retardation effects in electronic screening, and pinpoints a key challenge in functionalizing correlated materials for ultrafast device operation.