论文标题
Riemann-Liouville分数积分对无限变化点的影响
Effect of the Riemann-Liouville fractional integral on unbounded variation points
论文作者
论文摘要
本文旨在研究Riemann-Liouville分数积分操作员对连续函数无限变化点的影响。特别是,我们表明分数积分保留了函数的有界变化点。我们还证明,分数积分运算符是有界变化和连续函数类的有界线性操作员。
This paper targets to study the effect of the Riemann-Liouville fractional integral operator on unbounded variation points of a continuous function. In particular, we show that the fractional integral preserves the bounded variation points of a function. We also prove that the fractional integral operator is a bounded linear operator on the class of bounded variation and continuous functions.