论文标题

在泊松结构空间上的泊松支架

A Poisson bracket on the space of Poisson structures

论文作者

Machon, Thomas

论文摘要

令$ m $为平滑的封闭式定向歧管,$ \ Mathcal {p}(m)$ $ m $上的泊松结构的空间。我们在$ \ mathcal {p}(m)$上构建泊松支架,具体取决于音量表单的选择。括号的哈密顿流动作用于$ \ mathcal {p}(m)$ $ $ m $ $ m $。然后,我们定义了一个泊松结构的不变性,该结构描述了流程方程的固定点,并为常规泊松3个manifolds计算它,在该泊松中检测到单峰性。对于单模型的泊松结构,我们定义了一个相关的泊松支架,并表明,对于符号结构,流动方程的相关计数固定点是根据tseng和yau定义的$ d d^λ$和$ d d^λ$和$ d+ d+ d^λ$ symplectic coomplectic colomology组的。

Let $M$ be a smooth closed orientable manifold and $\mathcal{P}(M)$ the space of Poisson structures on $M$. We construct a Poisson bracket on $\mathcal{P}(M)$ depending on a choice of volume form. The Hamiltonian flow of the bracket acts on $\mathcal{P}(M)$ by volume-preserving diffeomorphism of $M$. We then define an invariant of a Poisson structure that describes fixed points of the flow equation and compute it for regular Poisson 3-manifolds, where it detects unimodularity. For unimodular Poisson structures we define a further, related Poisson bracket and show that for symplectic structures the associated invariant counting fixed points of the flow equation is given in terms of the $d d^Λ$ and $d+ d^Λ$ symplectic cohomology groups defined by Tseng and Yau.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源