论文标题

通过Lyapunov指数Hayward Black Hole的地球稳定性和准正常模式

Geodesic stability and Quasi normal modes via Lyapunov exponent for Hayward Black Hole

论文作者

Mondal, Monimala, Pradhan, Parthapratim, Rahaman, Farook, Karar, Indrani

论文摘要

我们得出适当的时间lyapunov指数$(λ_{p})$和坐标时间lyapunov exponent $(λ_{c})$,用于常规的黑洞Hayward类。正确的时间对应于$τ$,坐标时间对应于$ t $。 $ t $由渐近观察者用于海沃德黑洞和Schwarzschild黑洞的特殊情况。 我们将它们的比率计算为$ \ frac {λ_{p}} {λ_{c}} = \ frac {(r_σ^{3} + 2 l^{2} m)} {\ sqrt {\ sqrt { R_σ^{5}}}} $用于类似时间的大地测量。在$ l = 0 $的限制中,这意味着Schwarzschild黑洞该比率降低到$ \ frac {λ_{p}} {λ_{C}} = \ sqrt {\ frac {\ frac {r_σ}} {(r_σ-3m)}} $。使用Lyponuov指数,我们研究了赤道​​圆形测量学的稳定性和不稳定性。通过评估不稳定时间尺度的lyapunov指数,我们表明,在Eikonal限制下,准正常模式的实际和虚构部分〜(QNMS)由零循环测量学的频率和不稳定性时间尺度指定。 此外,我们讨论了这类黑洞的不稳定光子球和阴影半径。

We derive proper-time Lyapunov exponent $(λ_{p})$ and coordinate-time Lyapunov exponent $(λ_{c})$ for a regular Hayward class of black hole. The proper-time corresponds to $τ$ and the coordinate time corresponds to $t$. Where $t$ is measured by the asymptotic observers both for for Hayward black hole and for special case of Schwarzschild black hole. We compute their ratio as $\frac{λ_{p}}{λ_{c}} = \frac{(r_σ^{3} + 2 l^{2} m )}{\sqrt{(r_σ^{2} + 2 l^{2} m )^{3}- 3 m r_σ^{5}}}$ for time-like geodesics. In the limit of $l=0$ that means for Schwarzschild black hole this ratio reduces to $\frac{λ_{p}}{λ_{c}} = \sqrt{\frac{r_σ}{(r_σ-3 m)}}$. Using Lyponuov exponent, we investigate the stability and instability of equatorial circular geodesics. By evaluating the Lyapunov exponent, which is the inverse of the instability time-scale, we show that, in the eikonal limit, the real and imaginary parts of quasi-normal modes~(QNMs) is specified by the frequency and instability time scale of the null circular geodesics. Furthermore, we discuss the unstable photon sphere and radius of shadow for this class of black hole.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源