论文标题

个性化隐私保护

Local Generalization and Bucketization Technique for Personalized Privacy Preservation

论文作者

Li, Boyu, He, Kun, Sun, Geng

论文摘要

匿名技术已被广泛研究并广泛应用于隐私数据发布。在以前的大多数方法中,微数据表由三类属性组成:显式 - 识别符,准识别器(QI)和敏感属性。实际上,不同的人可能对不同属性的敏感性有不同的看法。因此,还有另一种类型的属性包含QI值和敏感值,即半敏属性。基于这样的观察,我们提出了一种新的匿名技术,称为局部概括和铲斗,以防止身份披露并保护每个半敏感属性和敏感属性上的敏感值。基本原理是使用局部概括和局部铲斗将元素分为局部等价组,并分别将敏感值分别分为局部桶。对局部概括和当地桶化的保护是独立的,因此可以通过适当的算法实施它们,而无需削弱其他保护。此外,每个半敏感属性和敏感属性的局部桶化也是独立的。因此,根据匿名化的实际要求,本地存储桶可以符合不同属性中的各种原则。进行的广泛实验说明了所提出的方法的有效性。

Anonymization technique has been extensively studied and widely applied for privacy-preserving data publishing. In most previous approaches, a microdata table consists of three categories of attribute: explicit-identifier, quasi-identifier (QI), and sensitive attribute. Actually, different individuals may have different view on the sensitivity of different attributes. Therefore, there is another type of attribute that contains both QI values and sensitive values, namely, semi-sensitive attribute. Based on such observation, we propose a new anonymization technique, called local generalization and bucketization, to prevent identity disclosure and protect the sensitive values on each semi-sensitive attribute and sensitive attribute. The rationale is to use local generalization and local bucketization to divide the tuples into local equivalence groups and partition the sensitive values into local buckets, respectively. The protections of local generalization and local bucketization are independent, so that they can be implemented by appropriate algorithms without weakening other protection, respectively. Besides, the protection of local bucketization for each semi-sensitive attribute and sensitive attribute is also independent. Consequently, local bucketization can comply with various principles in different attributes according to the actual requirements of anonymization. The conducted extensive experiments illustrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源