论文标题
可变订购裂缝力学及其在动态断裂中的应用
Variable-Order Fracture Mechanics and its Application to Dynamic Fracture
论文作者
论文摘要
这项研究介绍了基于可变阶机械概念的理论框架的公式,数值解决方案以及验证,并能够在脆性和准脆性固体中对动态断裂进行建模。更具体地说,通过变量和分数订单操作员对弹性动力问题进行重新制定,可以采用一种独特而极其强大的方法来建模成核和动态载荷下固体中裂纹的传播。所得的动态断裂公式是完全进化的,因此可以对复杂的裂纹模式进行分析,而无需对损伤位置和生长路径的任何先前的假设,以及使用任何算法来跟踪不断发展的裂纹表面。可变级形式主义的进化性质也阻止了需要其他偏微分方程来预测损伤场的需求,因此表明计算成本显着降低。值得注意的是,可变顺序公式自然能够捕获动态裂纹传播的极为详细的特征,例如裂纹表面粗糙,单个和多个分支。通过将直接数值模拟的结果与文献中典型基准问题的实验数据进行比较,可以验证所提出的可变顺序公式的准确性和鲁棒性。
This study presents the formulation, the numerical solution, and the validation of a theoretical framework based on the concept of variable-order mechanics and capable of modeling dynamic fracture in brittle and quasi-brittle solids. More specifically, the reformulation of the elastodynamic problem via variable and fractional order operators enables a unique and extremely powerful approach to model nucleation and propagation of cracks in solids under dynamic loading. The resulting dynamic fracture formulation is fully evolutionary hence enabling the analysis of complex crack patterns without requiring any a prior assumptions on the damage location and the growth path, as well as the use of any algorithm to track the evolving crack surface. The evolutionary nature of the variable-order formalism also prevents the need for additional partial differential equations to predict the damage field, hence suggesting a conspicuous reduction in the computational cost. Remarkably, the variable order formulation is naturally capable of capturing extremely detailed features characteristic of dynamic crack propagation such as crack surface roughening, single and multiple branching. The accuracy and robustness of the proposed variable-order formulation is validated by comparing the results of direct numerical simulations with experimental data of typical benchmark problems available in the literature.