论文标题
石墨烯上单层聚合物结晶的动力学和结构
Dynamics and Structure of Monolayer Polymer Crystallites on Graphene
论文作者
论文摘要
基于石墨烯的纳米结构系统和Van-der-Waals异质结构构成了一种不断增长的技术和科学重要性的物质类别。将材料与具有截然不同的特性的材料一起,聚合物 - 含磷酸异质系统承诺在表面和纳米技术(包括光伏或纳米脱脂)中采用多种应用。从根本上讲,分子吸附物是研究限制引起的相变的原型系统,这些系统表现出复杂的动力学,需要对分子时间和长度尺度上的动力学和静态特性有全面的了解。在这里,我们通过分子动力学模拟研究了独立石墨烯上单个聚乙烯链的动力学和结构。在平衡中,吸附的聚合物定向与石墨烯作为二维折叠链结晶石或在升高温度下作为浮动固体链接。相关的上层建筑可以在准稳定的底物加热时在皮秒时间尺度上可逆地融化,涉及通过瞬态浮动阶段的超快异质熔化。我们的发现阐明了与固体相互作用的单个聚合物中的时间分辨分子尺度订购和无序现象,从而产生了互补的信息,以与集体摩擦和粘度相互作用,并与超快电子衍射的最新实验性观察结果相关。我们预计该方法将有助于在广泛的时间和长度范围内解决混合聚合系统的非平衡现象。
Graphene-based nanostructured systems and van-der-Waals heterostructures comprise a material class of growing technological and scientific importance. Joining materials with vastly different properties, polymer-graphene heterosystems promise diverse applications in surface- and nanotechnology, including photovoltaics or nanotribology. Fundamentally, molecular adsorbates are prototypical systems to study confinement-induced phase transitions exhibiting intricate dynamics, which require a comprehensive understanding of the dynamical and static properties on molecular time and length scales. Here, we investigate the dynamics and the structure of a single polyethylene chain on free-standing graphene by means of molecular dynamics simulations. In equilibrium, the adsorbed polymer is orientationally linked to the graphene as two-dimensional folded-chain crystallites or, at elevated temperatures, as a floating solid. The associated superstructure can be reversibly melted on a picosecond time scale upon quasi-instantaneous substrate heating, involving ultrafast heterogeneous melting via a transient floating phase. Our findings elucidate time-resolved molecular-scale ordering and disordering phenomena in individual polymers interacting with solids, yielding complementary information to collective friction and viscosity, and linking to recent experimental observables from ultrafast electron diffraction. We anticipate that the approach will help in resolving non-equilibrium phenomena of hybrid polymeric systems over a broad range of time and length scales.