论文标题

双曲线coxeter组和尺寸最小的增长率四和五

Hyperbolic Coxeter groups and minimal growth rates in dimensions four and five

论文作者

Bredon, Naomi, Kellerhals, Ruth

论文摘要

对于小$ n $,已知的紧凑型双曲线$ n $ -Orbifolds的最小量与最小排名的Coxeter组密切相关。对于$ n = 2 $和$ 3 $,这些Coxeter组由三角形组$ [7,3] $和四面体组$ [3,5,3] $给出,并且它们也以所有共同型双胞胎coxeter组在$ \ hbox {Isom} {isom} {isom} {isom} \ nath $ nytical crompact双bolic coxeter组中的增长率最低而得到区别。在这项工作中,我们考虑了CoCompact Coxeter Simplex $ G_4 $与Coxeter符号$ [5,3,3,3] $ [5,3,3,3] $中的$ \ hbox {isom} \ Mathbb H^4 $和CooCompact Coxeter Prism $ g_5 $ g_5 $ g_5 $ g_5 $ g_5 $基于$ [5,3,3,3,3,3,3] $ in $ \ hbox $ \ hbox} $ \ hbox}这两个组都是算术的,并且与最小量的算术算术紧凑型双曲线$ n $ -Orbifold分别分别为$ n = 4 $和$ 5 $有关。在这里,我们证明了组$ g_n $的区别是,在$ n = 4 $和$ 5 $上分别在$ \ mathbb h^n $上表现出的所有Coxeter组的增长率最小。该证明是基于紧凑型双曲线甲壳虫多面体的组合特性,一些部分分类结果以及相关coxeter基团生长速率的某些单调性能。

For small $n$, the known compact hyperbolic $n$-orbifolds of minimal volume are intimately related to Coxeter groups of smallest rank. For $n=2$ and $3$, these Coxeter groups are given by the triangle group $[7,3]$ and the tetrahedral group $[3,5,3]$, and they are also distinguished by the fact that they have minimal growth rate among all cocompact hyperbolic Coxeter groups in $\hbox{Isom}\mathbb H^n$, respectively. In this work, we consider the cocompact Coxeter simplex group $G_4$ with Coxeter symbol $[5,3,3,3]$ in $\hbox{Isom}\mathbb H^4$ and the cocompact Coxeter prism group $G_5$ based on $[5,3,3,3,3]$ in $\hbox{Isom}\mathbb H^5$. Both groups are arithmetic and related to the fundamental group of the minimal volume arithmetic compact hyperbolic $n$-orbifold for $n=4$ and $5$, respectively. Here, we prove that the group $G_n$ is distinguished by having smallest growth rate among all Coxeter groups acting cocompactly on $\mathbb H^n$ for $n=4$ and $5$, respectively. The proof is based on combinatorial properties of compact hyperbolic Coxeter polyhedra, some partial classification results and certain monotonicity properties of growth rates of the associated Coxeter groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源