论文标题
有效计算全局分解模式
Efficient computation of global resolvent modes
论文作者
论文摘要
线性化的Navier-Stokes方程的分解分析提供了对过渡和湍流动力学动力学的有用洞察力,并可以为流量内的主要相干结构提供模型,尤其是对于具有较大增益分离的流动。使用完整分辨率矩阵的奇异值分解对力和响应模式的直接计算仅对于简单问题才能可行。尽管最近取得了进展,但对于复杂流的分解分析的成本仍然相当大。在本文中,我们提出了一种新的无基质方法,用于基于线性化方程的集成以及时间域中的相应伴随系统计算分解模式。与以前的无基质时间步进方法相比,我们的方法通过同时计算所有感兴趣的频率来达到数量级加速。提出了两种不同的方法:一种基于对瞬态响应的分析,提供了频率良好的领先模式;另一个基于对周期性强迫的稳态响应,为离散频率集提供了最佳和次优模式。使用线性化的金茨堡 - 兰道方程验证了该方法,并应用于抛物线体周围的三维流。
Resolvent analysis of the linearized Navier-Stokes equations provides useful insight into the dynamics of transitional and turbulent flows and can provide a model for the dominant coherent structures within the flow, particularly for flows with large gain separation. Direct computation of force and response modes using a singular value decomposition of the full resolvent matrix is feasible only for simple problems; despite recent progress, the cost of resolvent analysis for complex flows remains considerable. In this paper, we propose a new matrix-free method for computing resolvent modes based on integration of the linearized equations and the corresponding adjoint system in the time domain. Our approach achieves an order of magnitude speedup when compared to previous matrix-free time stepping methods by enabling all frequencies of interest to be computed simultaneously. Two different methods are presented: one based on analysis of the transient response, providing leading modes with fine frequency discretization; and another based on the steady-state response to a periodic forcing, providing optimal and suboptimal modes for a discrete set of frequencies. The methods are validated using a linearized Ginzburg-Landau equation and applied to the three dimensional flow around a parabolic body.