论文标题

盆地中具有滑动边界条件的正规浅水波系统:理论和数值分析

A regularized shallow-water waves system with slip-wall boundary conditions in a basin: Theory and numerical analysis

论文作者

Israwi, Samer, Kalisch, Henrik, Katsaounis, Theodoros, Mitsotakis, Dimitrios

论文摘要

在有限域中对长,非线性分散波的模拟通常需要使用滑壁边界条件。在施加这种边界条件时,出现在文献中的Boussinesq系统通常不会得到充分的范围,或者如果它们占有良好,则在数值近似中实现边界条件是非常繁琐的。 在本文中,当需要滑动壁边界条件时,提出了一个新的Boussinesq系统,用于研究盆地中长波的长波。新系统是在小小的测量变化的假设下使用渐近技术得出的,并且开发了新系统的数学证明。 新系统还使用Galerkin有限元方法进行数值求解,其中借助Nitsche的方法施加边界条件。分析了数值方法的收敛性,并提供了精确的误差估计。然后实现该方法,并使用数值实验验证收敛性。还提出了用于平面斜率上的孤立波的数值模拟。将结果与实验数据进行比较,并发现了出色的一致性。

The simulation of long, nonlinear dispersive waves in bounded domains usually requires the use of slip-wall boundary conditions. Boussinesq systems appearing in the literature are generally not well-posed when such boundary conditions are imposed, or if they are well-posed it is very cumbersome to implement the boundary conditions in numerical approximations. In the present paper a new Boussinesq system is proposed for the study of long waves of small amplitude in a basin when slip-wall boundary conditions are required. The new system is derived using asymptotic techniques under the assumption of small bathymetric variations, and a mathematical proof of well-posedness for the new system is developed. The new system is also solved numerically using a Galerkin finite-element method, where the boundary conditions are imposed with the help of Nitsche's method. Convergence of the numerical method is analyzed, and precise error estimates are provided. The method is then implemented, and the convergence is verified using numerical experiments. Numerical simulations for solitary waves shoaling on a plane slope are also presented. The results are compared to experimental data, and excellent agreement is found.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源