论文标题

程度差异:表征复杂网络中结构异质性的简单措施

Degree difference: A simple measure to characterize structural heterogeneity in complex networks

论文作者

Farzam, Amirhossein, Samal, Areejit, Jost, Jürgen

论文摘要

尽管对导致网络全球拓扑的局部几何形状的表征越来越兴趣,但我们对复杂网络的局部结构,尤其是现实世界网络的理解仍然是不完整的。在这里,我们分析了边缘顶点之间的一个简单,优雅但又不充分的度量,“度差”(DD),以了解本地网络几何形状。我们从形式和概念的角度描述了网络与全球分类之间的联系,并表明DD可以揭示网络科学中其他此类措施未获得的结构属性。通常,具有不同DD的边缘扮演着不同的结构角色,而DD分布是重要的网络签名。值得注意的是,DD是分类的基本单位。我们提供了一个解释,说明为什么DD可以在混合模式中表征结构异质性,这与全球分类性和局部节点分类性不同。通过分析合成和真实网络,我们表明DD分布可用于区分不同类型的网络,包括那些无法轻松使用学位序列和全局分类性来区分的网络。此外,我们显示DD是无标度网络拓扑鲁棒性的指标。总体而言,DD是一种局部措施,易于定义,易于评估,并且揭示了网络的结构性特性,从其他措施中看不到。

Despite the growing interest in characterizing the local geometry leading to the global topology of networks, our understanding of the local structure of complex networks, especially real-world networks, is still incomplete. Here, we analyze a simple, elegant yet underexplored measure, `degree difference' (DD) between vertices of an edge, to understand the local network geometry. We describe the connection between DD and global assortativity of the network from both formal and conceptual perspective, and show that DD can reveal structural properties that are not obtained from other such measures in network science. Typically, edges with different DD play different structural roles and the DD distribution is an important network signature. Notably, DD is the basic unit of assortativity. We provide an explanation as to why DD can characterize structural heterogeneity in mixing patterns unlike global assortativity and local node assortativity. By analyzing synthetic and real networks, we show that DD distribution can be used to distinguish between different types of networks including those networks that cannot be easily distinguished using degree sequence and global assortativity. Moreover, we show DD to be an indicator for topological robustness of scale-free networks. Overall, DD is a local measure that is simple to define, easy to evaluate, and that reveals structural properties of networks not readily seen from other measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源