论文标题
概率深度学习,例如细分
Probabilistic Deep Learning for Instance Segmentation
论文作者
论文摘要
概率卷积神经网络预测预测的分布而不是点估计,从图像重建到语义细分,导致了许多计算机视觉领域的最新进展。除了最先进的基准结果外,这些网络还可以量化预测中的局部不确定性。这些被用于积极学习框架,以针对专家注释者的标签工作或评估在关键环境中预测的质量。但是,例如分割问题这些方法到目前为止尚未经常使用。我们试图通过提出一种通用方法来缩小这一差距,以在无提案实例分割模型中获得模型关系估计的估计。此外,我们通过根据语义分割的指标分析了不确定性估计的质量。我们在BBBC010 C上评估了我们的方法。\秀拉斯数据集,它产生竞争性能,同时还预测了不确定性估计,这些估计值估计了有关对象级别不准确的信息,例如false拆分和假合并。我们执行模拟,以显示在指导校对中的这种不确定性估计的潜在用法。
Probabilistic convolutional neural networks, which predict distributions of predictions instead of point estimates, led to recent advances in many areas of computer vision, from image reconstruction to semantic segmentation. Besides state of the art benchmark results, these networks made it possible to quantify local uncertainties in the predictions. These were used in active learning frameworks to target the labeling efforts of specialist annotators or to assess the quality of a prediction in a safety-critical environment. However, for instance segmentation problems these methods are not frequently used so far. We seek to close this gap by proposing a generic method to obtain model-inherent uncertainty estimates within proposal-free instance segmentation models. Furthermore, we analyze the quality of the uncertainty estimates with a metric adapted from semantic segmentation. We evaluate our method on the BBBC010 C.\ elegans dataset, where it yields competitive performance while also predicting uncertainty estimates that carry information about object-level inaccuracies like false splits and false merges. We perform a simulation to show the potential use of such uncertainty estimates in guided proofreading.