论文标题
使用爱因斯坦半径的强透镜星系簇的有效质量估计
Efficient Mass Estimate at the Core of Strong Lensing Galaxy Clusters Using the Einstein Radius
论文作者
论文摘要
在大规模调查的时代,产生了数千个星系簇,必须在各个尺度上有效质量代理,以便将簇充分利用作为宇宙学探针。在强烈的镜头簇的岩心下,爱因斯坦半径可以变成质量估计。这种有效的方法通常用于文献中,以代替详细的质量模型。但是,假定其散布为$ \ sim30 \%$,尚未量化。在这里,我们通过对外缘N体宇宙学模拟的簇尺度光环的射线跟踪图像进行测试来评估该方法。我们在$ m(<θ_e)$中的零售价为$ 13.9 \%$,正偏置为$ 8.8 \%$,与总簇质量,浓度或镜头或源红移无系统性相关。我们发现,与球形对称性的偏差增加会增加散射。相反,透镜产生覆盖其爱因斯坦圆的大部分弧的弧线,散射和偏见都会减少。尽管镜头源的光谱红移对于准确的宏伟和时间延迟至关重要,但我们表明,为了估计总封闭质量,与其他错误来源相比,源红移不确定性引入的散布可忽略不计。最后,我们得出并应用了消除偏见的经验校正,并将散布降低至$ 10.1 \%$,而不引入与质量,红移或浓度的新相关性。我们的分析提供了对$ M(<θ_e)$中不确定性的首次定量评估,并使其有效用作强透镜星系簇的核心质量估计器。
In the era of large surveys, yielding thousands of galaxy clusters, efficient mass proxies at all scales are necessary in order to fully utilize clusters as cosmological probes. At the cores of strong lensing clusters, the Einstein radius can be turned into a mass estimate. This efficient method has been routinely used in literature, in lieu of detailed mass models; however, its scatter, assumed to be $\sim30\%$, has not yet been quantified. Here, we assess this method by testing it against ray-traced images of cluster-scale halos from the Outer Rim N-body cosmological simulation. We measure a scatter of $13.9\%$ and a positive bias of $8.8\%$ in $M(<θ_E)$, with no systematic correlation with total cluster mass, concentration, or lens or source redshifts. We find that increased deviation from spherical symmetry increases the scatter; conversely, where the lens produces arcs that cover a large fraction of its Einstein circle, both the scatter and the bias decrease. While spectroscopic redshifts of the lensed sources are critical for accurate magnifications and time delays, we show that for the purpose of estimating the total enclosed mass, the scatter introduced by source redshift uncertainty is negligible compared to other sources of error. Finally, we derive and apply an empirical correction that eliminates the bias, and reduces the scatter to $10.1\%$ without introducing new correlations with mass, redshifts, or concentration. Our analysis provides the first quantitative assessment of the uncertainties in $M(<θ_E)$, and enables its effective use as a core mass estimator of strong lensing galaxy clusters.