论文标题
两种模型量子$ \ mathrm {x} $ waves的挤压和纠缠
Squeezing and Entanglement of two-modes Quantum $\mathrm{X}$ Waves
论文作者
论文摘要
在分散介质中使用轨道角动量的广义$ \ mathrm {x} $ WAVE的量子理论,并在二次非线性介质中量化的$ \ mathrm {x} $ Waves的相互作用进行了研究(J. Opt,J。Opt,20,065201(2018))。我们提出了一种相匹配,称为速度相位匹配,并且该相匹配可用于确定非线性晶体的长度或实验设置中的相互作用时间,以产生$ \ mathrm {x} $ wav,并具有特定速度$ v $。此外,我们对$ \ mathrm {x} $ wave在光谱顺序上挤压的依赖性介绍了更多分析,对于光谱订单$ j> 0 $,我们预测存在特征性的axicon孔径,以实现最大挤压。然后,我们发现由$χ^{2} $ - 非线性过程生成的向下转换状态的量子状态。最后,我们使用可分离性标准检测到它们的纠缠。
quantum theory of generalized $\mathrm{X}$ waves with orbital angular momentum in dispersive media, and the interaction of quantized $\mathrm{X}$ waves in quadratic nonlinear media were studied in (J. opt,20,065201(2018)). We present a kind of phase matching, which is called velocity phase matching, and this phase matching can be used for determining the length of the nonlinear crystal or the interaction time in the experiment setup, to produce $\mathrm{X}$ waves with particular velocity $v$. Moreover, we introduce more analysis for the dependence of squeezing of $\mathrm{X}$ waves on its spectral order, and for spectral orders $j>0$, we predict the existence of a characteristic axicon aperture for maximal squeezing. Then we find the quantum squeezed state of down-converted state generated by the $χ^{2}$-nonlinear process. Finally, we detect their entanglement using a criterion of separability.