论文标题
武器大的混合运行时电源模型的评估。
Evaluation of hybrid run-time power models for the ARM big.LITTLE architecture
论文作者
论文摘要
由二元兼容的CPU内核形成的异质处理器具有不同的微体系结构,可以通过更好地匹配处理能力和软件应用程序要求来减少能量。这个新的硬件平台需要新颖的技术来管理电源和能量以充分利用其功能,尤其是在工作负载映射到适当的核心方面。在本文中,我们验证了与异质系统的功率建模相关的相关已发布的工作,并提出了一种开发运行时电源模型的新方法,该方法使用一组混合的物理预测因子,性能事件和CPU状态信息。我们证明了这种方法的准确性与最先进的艺术品及其对能源知识计划的适用性相比。我们的结果是在围绕三星Exynos 5 Octa Soc建造的市售平台上获得的,该平台具有Big.Litter big.litter big。
Heterogeneous processors, formed by binary compatible CPU cores with different microarchitectures, enable energy reductions by better matching processing capabilities and software application requirements. This new hardware platform requires novel techniques to manage power and energy to fully utilize its capabilities, particularly regarding the mapping of workloads to appropriate cores. In this paper we validate relevant published work related to power modelling for heterogeneous systems and propose a new approach for developing run-time power models that uses a hybrid set of physical predictors, performance events and CPU state information. We demonstrate the accuracy of this approach compared with the state-of-the-art and its applicability to energy aware scheduling. Our results are obtained on a commercially available platform built around the Samsung Exynos 5 Octa SoC, which features the ARM big.LITTLE heterogeneous architecture.