论文标题

SDE-NET:为深度神经网络提供不确定性估计

SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates

论文作者

Kong, Lingkai, Sun, Jimeng, Zhang, Chao

论文摘要

不确定性量化是深度学习的基本但未解决的问题。贝叶斯框架提供了一种原则性的不确定性估计方法,但通常对具有大量参数的现代深神经网(DNN)不可扩展。非乘坐方法易于实现,但通常会混合不同的不确定性来源,需要大量的计算资源。我们提出了一种从动态系统角度量化DNN的不确定性的新方法。我们方法的核心是将DNN变换视为随机动力学系统的状态演变,并引入了捕获认知不确定性的布朗运动项。基于这个观点,我们提出了一个神经随机微分方程模型(SDE-NET),该模型由(1)控制系统控制系统以适合预测功能的漂移网。 (2)捕获认知不确定性的扩散网。我们理论上分析了解决SDE-NET的解决方案的存在和独特性。我们的实验表明,SDE-NET模型可以超越现有的不确定性估计方法,而不确定性起着基本作用的一系列任务。

Uncertainty quantification is a fundamental yet unsolved problem for deep learning. The Bayesian framework provides a principled way of uncertainty estimation but is often not scalable to modern deep neural nets (DNNs) that have a large number of parameters. Non-Bayesian methods are simple to implement but often conflate different sources of uncertainties and require huge computing resources. We propose a new method for quantifying uncertainties of DNNs from a dynamical system perspective. The core of our method is to view DNN transformations as state evolution of a stochastic dynamical system and introduce a Brownian motion term for capturing epistemic uncertainty. Based on this perspective, we propose a neural stochastic differential equation model (SDE-Net) which consists of (1) a drift net that controls the system to fit the predictive function; and (2) a diffusion net that captures epistemic uncertainty. We theoretically analyze the existence and uniqueness of the solution to SDE-Net. Our experiments demonstrate that the SDE-Net model can outperform existing uncertainty estimation methods across a series of tasks where uncertainty plays a fundamental role.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源