论文标题

最小网络在反向半群上引起的准那天之间的关系

Relationships among quasivarieties induced by the min networks on inverse semigroups

论文作者

Feng, Ying-Ying, Wang, Li-Min, Zhou, Zhi-Yong

论文摘要

一致性的逆半群$ s $由其内核和痕迹唯一确定。 Denoting by $ρ_k$ and $ρ_t$ the least congruence on $S$ having the same kernel and the same trace as $ρ$, respectively, and denoting by $ω$ the universal congruence on $S$, we consider the sequence $ω$, $ω_k$, $ω_t$, $(ω_k)_t$, $(ω_t)_k$, $((ω_k)_t)_k $,$((ω_t)_K)_t $,$ \ cdots $。 $ \ {s/ω_k\} $,$ \ {s/ω_t\} $,$ \ {s/(ω_k)_t \} $,$ \ {s/(ω__t)_k \} $ \ {s/(((ω_t)_k)_t \} $,$ \ cdots $,$ s $在所有反向半群上运行,形成quasivarieties。本文探讨了这些准里埃之间的关系。

A congruence on an inverse semigroup $S$ is determined uniquely by its kernel and trace. Denoting by $ρ_k$ and $ρ_t$ the least congruence on $S$ having the same kernel and the same trace as $ρ$, respectively, and denoting by $ω$ the universal congruence on $S$, we consider the sequence $ω$, $ω_k$, $ω_t$, $(ω_k)_t$, $(ω_t)_k$, $((ω_k)_t)_k$, $((ω_t)_k)_t$, $\cdots$. The quotients $\{S/ω_k\}$, $\{S/ω_t\}$, $\{S/(ω_k)_t\}$, $\{S/(ω_t)_k\}$, $\{S/((ω_k)_t)_k\}$, $\{S/((ω_t)_k)_t\}$, $\cdots$, as $S$ runs over all inverse semigroups, form quasivarieties. This article explores the relationships among these quasivarieties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源