论文标题

纳米级等离子体中的自发和刺激的电子 - 光子相互作用近场

Spontaneous and Stimulated Electron-Photon Interactions in Nanoscale Plasmonic Near Fields

论文作者

Liebtrau, Matthias, Sivis, Murat, Feist, Armin, Lourenço-Martins, Hugo, Pazos-Pérez, Nicolas, Alvarez-Puebla, Ramon A., de Abajo, F. Javier García, Polman, Albert, Ropers, Claus

论文摘要

我们展示了使用电子能量损坏光谱(EELS),阴极发光光谱(CL)和光子诱导的近场电子显微镜(Pinem)的纳米级光学光谱(EEL),纳米级光学近场中自发和刺激的电子相互作用的空间测量。具体而言,我们研究了一个谐振的表面等离子体模式,这些模式紧密地局限于Au纳米级的尖端顶端,在相同的物理结构上以纳米长度尺度的相同物理结构在相同的物理结构上具有直接相关性。在数值电磁边界元素方法计算的情况下,我们讨论了鳗鱼,Cl和Pinem分布的自发和刺激的电子相互作用强度以及空间依赖性。我们证明,在孤立的尖端模式的极限下,电子磁场耦合的空间变化完全由模态电场谱完全确定,而与自发性(在鳗鱼和CL中)或过程的刺激性质(在鳗鱼和CL中)无关。但是,我们证明,与尖端模式的耦合至关重要地取决于入射电子能,最大值在几个keV处,具体取决于相互作用与尖端顶点的接近度。我们的结果提供了对纳米级自发和刺激的电子 - 光线相互作用的基本见解,这些相互作用对电子显微镜中的(量子)相干光学现象具有关键意义。

We demonstrate spatially-resolved measurements of spontaneous and stimulated electron-photon interactions in nanoscale optical near fields using electron energy-loss spectroscopy (EELS), cathodoluminescence spectroscopy (CL), and photon-induced near-field electron microscopy (PINEM). Specifically, we study resonant surface plasmon modes that are tightly confined to the tip apexes of an Au nanostar, enabling a direct correlation of EELS, CL, and PINEM on the same physical structure at the nanometer length scale. Complemented by numerical electromagnetic boundary-element method calculations, we discuss the spontaneous and stimulated electron-photon interaction strength and spatial dependence of our EELS, CL and PINEM distributions. We demonstrate that in the limit of an isolated tip mode, spatial variations in the electron-near field coupling are fully determined by the modal electric field profile, irrespective of the spontaneous (in EELS and CL) or stimulated nature (in PINEM) of the process. Yet we show that coupling to the tip modes crucially depends on the incident electron energy with a maximum at a few keV, depending on the proximity of the interaction to the tip apex. Our results provide elementary insights into spontaneous and stimulated electron-light-matter interactions at the nanoscale that have key implications for research on (quantum) coherent optical phenomena in electron microscopy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源