论文标题

新型随机方法的理论和实施

Theory and Implementation of a Novel Stochastic Approach to Coupled Cluster

论文作者

Scott, Charles J. C., Di Remigio, Roberto, Crawford, T. Daniel, Thom, Alex J. W.

论文摘要

我们详细讨论了我们的新图解耦合群集蒙特卡洛(DIAGCCMC)[Scott等。 J. Phys。化学Lett。 2019,10,925]。 DIAGCCMC算法对相似性转化的耦合群schrödinger方程进行了假想的时间传播。假想时间更新是通过耦合群集向量函数的随机采样来计算的:将每个项评估为在相似性转化的汉密尔顿的连接扩展中的随机图表。我们强调了确定性和随机连接的耦合群集理论之间的相似性和差异,当后者被重新表达为示意图扩展的样本,并讨论了我们实施的细节,以实现无步行者的随机抽样。最后,我们证明,在存在局部性的情况下,我们的算法可以获得每个电子的固定错误栏,而仅需要渐近计算努力,该渐近计算努力与系统大小进行了四个缩放,而与耦合群集理论无关,而不是截断水平。如前所述,该算法仅需要线性缩放的渐近记忆成本。这些缩放降低不需要对该方法进行临时修改。

We present a detailed discussion of our novel diagrammatic coupled cluster Monte Carlo (diagCCMC) [Scott et al. J. Phys. Chem. Lett. 2019, 10, 925]. The diagCCMC algorithm performs an imaginary-time propagation of the similarity-transformed coupled cluster Schrödinger equation. Imaginary-time updates are computed by stochastic sampling of the coupled cluster vector function: each term is evaluated as a randomly realised diagram in the connected expansion of the similarity-transformed Hamiltonian. We highlight similarities and differences between deterministic and stochastic linked coupled cluster theory when the latter is re-expressed as a sampling of the diagrammatic expansion, and discuss details of our implementation that allow for a walker-less realisation of the stochastic sampling. Finally, we demonstrate that in the presence of locality, our algorithm can obtain a fixed errorbar per electron while only requiring an asymptotic computational effort that scales quartically with system size, independently of truncation level in coupled cluster theory. The algorithm only requires an asymptotic memory costs scaling linearly, as demonstrated previously. These scaling reductions require no ad hoc modifications to the approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源