论文标题
Fano三倍的非同态内态性
Non-isomorphic endomorphisms of Fano threefolds
论文作者
论文摘要
令$ x $成为平滑的三倍。我们表明,$ x $在且仅当$ x $是折叠品种或$ \ mathbb {p}^1 $和del pezzo Surface的产品时,就承认了非同型透明的内态性。在这种情况下,$ x $是一个理性的品种。我们进一步表明,$ x $在且仅当$ x $是感谢您的情况下,就承认了两极分化(或放大)的内态。
Let $X$ be a smooth Fano threefold. We show that $X$ admits a non-isomorphic surjective endomorphism if and only if $X$ is either a toric variety or a product of $\mathbb{P}^1$ and a del Pezzo surface; in this case, $X$ is a rational variety. We further show that $X$ admits a polarized (or amplified) endomorphism if and only if $X$ is a toric variety.