论文标题

博世深度学习硬件基准测试

Bosch Deep Learning Hardware Benchmark

论文作者

Runge, Armin, Wenzel, Thomas, Bariamis, Dimitrios, Staffler, Benedikt Sebastian, Drumond, Lucas Rego, Pfeiffer, Michael

论文摘要

深度学习(DL)在科学和行业中的广泛使用已经对有效的推理系统产生了巨大的需求。这导致可用的硬件加速器(HWA)迅速增加,使比较具有挑战性和费力。为了解决这个问题,已经提出了几个DL硬件基准测试,目的是针对许多型号,任务和硬件平台进行全面比较。在这里,我们介绍了DL硬件基准测试,该基准是专门针对嵌入式HWA和自动驾驶所需的任务进行推断的。除了以前的基准测试外,我们还提出了一个新的粒度水平来评估DL模型的常见子模型,这是一个两倍基准测试程序,说明了HWA制造商进行的硬件和模型优化,以及一组扩展的性能指标,可以帮助您识别A HWA和我们在我们的BenchMarks中使用的DL模型之间使用的不匹配。

The widespread use of Deep Learning (DL) applications in science and industry has created a large demand for efficient inference systems. This has resulted in a rapid increase of available Hardware Accelerators (HWAs) making comparison challenging and laborious. To address this, several DL hardware benchmarks have been proposed aiming at a comprehensive comparison for many models, tasks, and hardware platforms. Here, we present our DL hardware benchmark which has been specifically developed for inference on embedded HWAs and tasks required for autonomous driving. In addition to previous benchmarks, we propose a new granularity level to evaluate common submodules of DL models, a twofold benchmark procedure that accounts for hardware and model optimizations done by HWA manufacturers, and an extended set of performance indicators that can help to identify a mismatch between a HWA and the DL models used in our benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源