论文标题

与模型转移的跨语性语义角色标签

Cross-lingual Semantic Role Labeling with Model Transfer

论文作者

Fei, Hao, Zhang, Meishan, Li, Fei, Ji, Donghong

论文摘要

先前的研究表明,在通用特征的帮助下,可以通过模型转移来实现跨语性语义角色标签(SRL)。在本文中,我们通过提出端到端的SRL模型来填补跨语义SRL的空白,该模型结合了各种通用特征和转移方法。我们研究双语转移和多源传输,在金或机器生成的句法输入,预训练的高级抽象特征以及上下文化的多语言单词表示下。通用命题库语料库的实验结果表明,跨语性SRL的性能通过利用不同的跨语性特征而有所不同。此外,这些功能是否为金标准也会影响性能。确切地说,与自动生成的SRL相比,黄金语法特征对于跨语义SRL至关重要。此外,通用依赖性结构功能能够提供最佳帮助,并且预训练的高阶功能和上下文化的单词表示都可以进一步带来重大改进。

Prior studies show that cross-lingual semantic role labeling (SRL) can be achieved by model transfer under the help of universal features. In this paper, we fill the gap of cross-lingual SRL by proposing an end-to-end SRL model that incorporates a variety of universal features and transfer methods. We study both the bilingual transfer and multi-source transfer, under gold or machine-generated syntactic inputs, pre-trained high-order abstract features, and contextualized multilingual word representations. Experimental results on the Universal Proposition Bank corpus indicate that performances of the cross-lingual SRL can vary by leveraging different cross-lingual features. In addition, whether the features are gold-standard also has an impact on performances. Precisely, we find that gold syntax features are much more crucial for cross-lingual SRL, compared with the automatically-generated ones. Moreover, universal dependency structure features are able to give the best help, and both pre-trained high-order features and contextualized word representations can further bring significant improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源