论文标题

神经面部反射场的单眼重建

Monocular Reconstruction of Neural Face Reflectance Fields

论文作者

R., Mallikarjun B, Tewari, Ayush, Oh, Tae-Hyun, Weyrich, Tim, Bickel, Bernd, Seidel, Hans-Peter, Pfister, Hanspeter, Matusik, Wojciech, Elgharib, Mohamed, Theobalt, Christian

论文摘要

面部的反射率场描述了负责复杂照明效果的反射率特性,包括弥漫,镜面,反射和自我阴影。大多数现有的用于估算单眼图像的面部反射率的方法假设面部是扩散的,而很少有添加镜面成分的方法。由于没有建模,这仍然遗漏了反射率的重要感知方面。我们提出了一种新的神经表示,以供面部反射率,在其中我们可以估计反射的所有组成部分,导致单眼图像的最终外观。我们的神经表示不是使用参数模型分别对反射率的每个组件进行建模,而是使我们能够在几何变形空间中生成一组面,并通过输入光方向,视点和面部几何形状进行参数。我们学会从单眼图像中重建面部的反射率场,该图像可用于从任何光条件下从任何角度呈现脸部。我们的方法在一个轻型训练数据集上进行了培训,该数据集捕获了300人从8个观点开始用150个光条件照亮。我们表明,我们的方法优于现有的单眼反射重建方法,这是由于更好地捕获物理前提的捕获,例如地下表散射,镜面,自我遮阳和其他高阶效应,而在光真相中。

The reflectance field of a face describes the reflectance properties responsible for complex lighting effects including diffuse, specular, inter-reflection and self shadowing. Most existing methods for estimating the face reflectance from a monocular image assume faces to be diffuse with very few approaches adding a specular component. This still leaves out important perceptual aspects of reflectance as higher-order global illumination effects and self-shadowing are not modeled. We present a new neural representation for face reflectance where we can estimate all components of the reflectance responsible for the final appearance from a single monocular image. Instead of modeling each component of the reflectance separately using parametric models, our neural representation allows us to generate a basis set of faces in a geometric deformation-invariant space, parameterized by the input light direction, viewpoint and face geometry. We learn to reconstruct this reflectance field of a face just from a monocular image, which can be used to render the face from any viewpoint in any light condition. Our method is trained on a light-stage training dataset, which captures 300 people illuminated with 150 light conditions from 8 viewpoints. We show that our method outperforms existing monocular reflectance reconstruction methods, in terms of photorealism due to better capturing of physical premitives, such as sub-surface scattering, specularities, self-shadows and other higher-order effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源