论文标题
二维狄拉克半学没有反转对称性
Two-dimensional Dirac Semimetals without Inversion Symmetry
论文作者
论文摘要
实现稳定的二维(2D)DIRAC点针对自旋轨道耦合(SOC)引起了很多关注,因为它为研究独特的运输特性提供了一个平台。在以前的工作中,Young and Kane [Phys。莱特牧师。 \ textbf {115},126803(2015)]提出了与SOC的稳定2D DIRAC点,其中浆果曲率和边缘状态由于反转和时间反向对称性而消失。在此,使用紧密结合模型和k $ \ cdot $ p有效的哈密顿量,我们表明,在没有倒置对称性的情况下,2D Dirac点可以生存。这种2D DIRAC半学在交叉节点附近具有非零浆果曲率,并且两个边缘状态终止于一对零点。此外,根据对称性论点和高通量第一原理的计算,我们确定了一个理想的2D Dirac半学系列,该家族在Dirac点和可见边缘状态附近具有非零的浆果曲率,从而促进了实验性观察。我们的工作表明,2D DIRAC点可以在没有倒置对称性的情况下出现,这不仅丰富了2D拓扑半学的分类,而且还提供了一个有希望的途径,可以观察到除石墨烯之外的异国情调的传输现象,例如非线性霍尔效应。
Realizing stable two-dimensional (2D) Dirac points against spin-orbit coupling (SOC) has attracted much attention because it provides a platform to study the unique transport properties. In previous work, Young and Kane [Phys. Rev. Lett. \textbf{115}, 126803 (2015)] proposed stable 2D Dirac points with SOC, in which the Berry curvature and edge states vanish due to the coexistence of inversion and time-reversal symmetries. Herein, using the tight-binding model and k$\cdot$p effective Hamiltonian, we present that 2D Dirac points can survive in the presence of SOC without inversion symmetry. Such 2D Dirac semimetals possess nonzero Berry curvature near the crossing nodes, and two edge states are terminated at one pair of Dirac points. In addition, according to symmetry arguments and high-throughput first-principles calculations, we identify a family of ideal 2D Dirac semimetals, which has nonzero Berry curvature in the vicinity of Dirac points and visible edge states, thus facilitating the experimental observations. Our work shows that 2D Dirac points can emerge without inversion symmetry, which not only enriches the classification of 2D topological semimetals but also provides a promising avenue to observe exotic transport phenomena beyond graphene, e.g., nonlinear Hall effect.