论文标题

非线性安德森模型的扩散

Diffusion bound for the nonlinear Anderson model

论文作者

Cong, Hongzi, Shi, Yunfeng

论文摘要

在本文中,我们证明了时间上限的幂律,以扩散1D离散的非线性Anderson模型。我们完全删除了限制波尔加港非线性的腐烂条件(Ann。Math。Stud。163:21--42,2007。)。这解决了Bourgain(Illinois J.Math。50:183--188,2006)的问题。非线性无序系统的扩散结合。证明使用了基于哈密顿的驯服特性的小说``规范''。

In this paper, we prove the power-law in time upper bound for the diffusion of a 1D discrete nonlinear Anderson model. We remove completely the decaying condition restricted on the nonlinearity of Bourgain-Wang (Ann. of Math. Stud. 163: 21--42, 2007.). This gives a resolution to the problem of Bourgain (Illinois J. Math. 50: 183--188, 2006.) on diffusion bound for nonlinear disordered systems. The proof uses a novel ``norm'' based on tame property of the Hamiltonian.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源