论文标题

使用机器学习和概率理论技术在医疗数据中处理不确定性:30年的评论(1991-2020)

Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991-2020)

论文作者

Alizadehsani, Roohallah, Roshanzamir, Mohamad, Hussain, Sadiq, Khosravi, Abbas, Koohestani, Afsaneh, Zangooei, Mohammad Hossein, Abdar, Moloud, Beykikhoshk, Adham, Shoeibi, Afshin, Zare, Assef, Panahiazar, Maryam, Nahavandi, Saeid, Srinivasan, Dipti, Atiya, Amir F., Acharya, U. Rajendra

论文摘要

在当今的大数据时代,了解数据并得出有效的结论至关重要。机器学习和概率理论方法在不同字段中为此目的广泛应用。一个至关重要但较少的方面是如何捕获和分析数据和模型不确定性。正确量化不确定性为最佳决策提供了宝贵的信息。本文回顾了过去30年(从1991年到2020年)在使用概率理论和机器学习技术处理医疗数据中的不确定性方面进行的相关研究。由于数据中存在噪声,医疗数据更容易出现不确定性。因此,拥有清洁的医疗数据而没有任何噪音以获得准确的诊断非常重要。需要知道医疗数据中的噪声来源以解决此问题。根据医生获得的医疗数据,规定了疾病和治疗计划的诊断。因此,医疗保健的不确定性正在增长,解决这些问题的知识有限。我们对最佳治疗方法的了解很少,因为医学科学中有许多不确定性来源。我们的发现表明,处理医疗原始数据和新模型的不确定性时,几乎没有挑战。在这项工作中,我们总结了克服这个问题的各种方法。如今,新型深度学习技术在处理此类不确定性方面的应用已大大增加。

Understanding data and reaching valid conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have widespread application for this purpose in different fields. One critically important yet less explored aspect is how data and model uncertainties are captured and analyzed. Proper quantification of uncertainty provides valuable information for optimal decision making. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. We have little knowledge about the optimal treatment methods as there are many sources of uncertainty in medical science. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, application of novel deep learning techniques to deal such uncertainties have significantly increased.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源