论文标题

纳米纤维介导的骨骼抗断裂性

Nanofibril-mediated Fracture Resistance of Bone

论文作者

Tertuliano, Ottman A., Edwards, Bryce W., Meza, Lucas R., Deshpande, Vikram S., Greer, Julia R.

论文摘要

像人骨之类的天然硬复合材料具有强度和韧性的结合,超过了其成分和许多工程复合材料的组合。这种增强归因于其复杂的层次结构,涵盖了多个长度尺度。在骨骼中,特征尺寸范围从纳米级原纤维到微观薄片到中尺度骨和宏观科目。已经研究了骨骼的机械性能,并了解与整个组织相比,微型和纳米尺度的分离的微观结构可提高强度,并且与其纳米级成分相比,组织具有扩增的韧性。由于在小型样品上进行骨折实验的挑战,在样品尺寸上,骨骼的纳米级韧性机制尚未充分理解。我们开发了一种原位三点弯曲实验方法,该方法探测了微米大小的硬材料标本的位点特异性骨折行为。使用此过程,我们用尖锐的曲折预裂和钝的切口来量化人小梁骨的裂纹起始和生长韧性。我们的发现表明,疲劳裂纹的骨骼比钝裂骨要硬两倍。与原位数据相关的电子显微镜视频揭示了这种行为是由于纳米级纤维结构构成裂纹而产生的。结果表明,作为长度尺度的函数,纤维桥(〜1 $ $ M)与裂纹偏转/扭曲(〜500 $μ$ M)之间的过渡,并定量地证明了复杂材料中层次结构诱导的韧性。这种多功能方法可以量化各种复杂材料系统中韧性与微观结构之间的关系,并为设计仿生复合材料提供直接见解。

Natural hard composites like human bone possess a combination of strength and toughness that exceeds that of their constituents and of many engineered composites. This augmentation is attributed to their complex hierarchical structure, spanning multiple length scales; in bone, characteristic dimensions range from nanoscale fibrils to microscale lamellae to mesoscale osteons and macroscale organs. The mechanical properties of bone have been studied, with the understanding that the isolated microstructure at micro- and nano-scales gives rise to superior strength compared to that of whole tissue, and the tissue possesses an amplified toughness relative to that of its nanoscale constituents. Nanoscale toughening mechanisms of bone are not adequately understood at sample dimensions that allow for isolating salient microstructural features, because of the challenge of performing fracture experiments on small-sized samples. We developed an in-situ three-point bend experimental methodology that probes site-specific fracture behavior of micron-sized specimens of hard material. Using this, we quantify crack initiation and growth toughness of human trabecular bone with sharp fatigue pre-cracks and blunt notches. Our findings indicate that bone with fatigue cracks is two times tougher than that with blunt cracks. In-situ data-correlated electron microscopy videos reveal this behavior arises from crack-bridging by nanoscale fibril structure. The results reveal a transition between fibril-bridging (~1 $μ$m) and crack deflection/twist (~500 $μ$m) as a function of length-scale, and quantitatively demonstrate hierarchy-induced toughening in a complex material. This versatile approach enables quantifying the relationship between toughness and microstructure in various complex material systems and provides direct insight for designing biomimetic composites.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源