论文标题
ICVI-ARTMAP:使用自适应共振理论预测映射和增量群集有效性指数加速和改进聚类
iCVI-ARTMAP: Accelerating and improving clustering using adaptive resonance theory predictive mapping and incremental cluster validity indices
论文作者
论文摘要
本文提出了一种自适应共振理论预测映射(ARTMAP)模型,该模型使用增量群集有效性指数(ICVIS)执行无监督的学习,即ICVI-Artmap。将ICVI纳入决策和ARTMAP的多对一映射功能可以改善样品被逐步分配的簇的选择。这些改进是通过智能执行簇,分裂和合并群集之间交换样品分配的操作来实现的,并在需要重新计算ICVI值时缓存变量的值。使用递归配方使ICVI-Artmap可以大大减少与基于集群有效性指数(CVI)的离线聚类相关的计算负担。根据ICVI和数据集,它可以比使用批处理CVI计算时达到最高两个数量级的运行时间。在这项工作中,将Calinski-Harabasz,WB-Index,Xie-Beni,Davies-Boldin,Pakhira-Bandyopadhyay-Maulik和NegentRopy增量的增量版本集成到Fuzzy Artmap中。实验结果表明,通过正确选择ICVI,ICVI-ARTMAP的表现超过模糊自适应共振理论(ART),双重警惕模糊艺术,Kmeans,Kmeans,Spectral CMENTURSIN,高斯混合模型和层次聚集的聚集聚类算法在大多数合成曲局数据集中在大多数中。当在预测和由深度聚类模型生成的潜在空间聚类时,它还在现实世界图像基准数据集上进行了竞争性执行。自然,ICVI-Artmap的性能受到选定的ICVI及其对手头数据的适用性;幸运的是,这是一个通用模型,其中其他ICVI可以轻松嵌入。
This paper presents an adaptive resonance theory predictive mapping (ARTMAP) model which uses incremental cluster validity indices (iCVIs) to perform unsupervised learning, namely iCVI-ARTMAP. Incorporating iCVIs to the decision-making and many-to-one mapping capabilities of ARTMAP can improve the choices of clusters to which samples are incrementally assigned. These improvements are accomplished by intelligently performing the operations of swapping sample assignments between clusters, splitting and merging clusters, and caching the values of variables when iCVI values need to be recomputed. Using recursive formulations enables iCVI-ARTMAP to considerably reduce the computational burden associated with cluster validity index (CVI)-based offline clustering. Depending on the iCVI and the data set, it can achieve running times up to two orders of magnitude shorter than when using batch CVI computations. In this work, the incremental versions of Calinski-Harabasz, WB-index, Xie-Beni, Davies-Bouldin, Pakhira-Bandyopadhyay-Maulik, and negentropy increment were integrated into fuzzy ARTMAP. Experimental results show that, with proper choice of iCVI, iCVI-ARTMAP outperformed fuzzy adaptive resonance theory (ART), dual vigilance fuzzy ART, kmeans, spectral clustering, Gaussian mixture models and hierarchical agglomerative clustering algorithms in most of the synthetic benchmark data sets. It also performed competitively on real world image benchmark data sets when clustering on projections and on latent spaces generated by a deep clustering model. Naturally, the performance of iCVI-ARTMAP is subject to the selected iCVI and its suitability to the data at hand; fortunately, it is a general model wherein other iCVIs can be easily embedded.