论文标题

在包含面包师的fatou套装上省略了价值

On Fatou sets containing Baker omitted value

论文作者

Ghora, Subhasis, Nayak, Tarakanta, Sahoo, Satyajit

论文摘要

省略的先验物种函数$ f $的省略值称为面包师省略的值,简而言之,如果有一个集中在bov的磁盘$ d $,以使$ f^{ - 1}(-1}(d)$边界的每个组件的每个组件都受到界限。假设BOV位于$ f $的FATOU集中,本文研究了该功能的动态。首先,确定所有FATOU组件的连通性。如果$ u $是包含BOV的FATOU组件,则证明fatou组件$ u'$在且仅当它降落在$ u $上时,即$ f^{k}(u')\ subset u $,对于某些$ k \ geq 1 $。其他所有Fatou组件要么简单地连接,要么降落在Herman戒指上。此外,假设FATOU集合中的临界点的数量不相交$ u $是有限的,我们已经证明了每个FATOU组件的连接性属于有限集。该集合独立于FATOU组件。事实证明,只要前向不变,包含BOV的FATOU组件都是完全不变的。此外,如果不变的FATOU组件是一个吸引的域,并且紧凑包含函数的所有临界值,则朱莉娅集合完全断开。每当BOV都在FATOU集中时,贝克域被证明是不存在的。还可以证明,如果有一个$ 2 $的周期性面包师域(当Bov在朱莉娅(Julia)套装中时不排除这些域名),或一个$ 2 $的周期性吸引或抛物线域,其中包含BOV,那么该功能就没有Herman Ring。讨论了一些表现出FATOU可能性不同的例子。这包括具有省略值的meromorthic函数的第一个示例,该值具有两个无限连接的FATOU组件。

An omitted value of a transcendental meromorphic function $f$ is called a Baker omitted value, in short \textit{bov} if there is a disk $D$ centered at the bov such that each component of the boundary of $f^{-1}(D)$ is bounded. Assuming that the bov is in the Fatou set of $f$, this article investigates the dynamics of the function. Firstly, the connectivity of all the Fatou components are determined. If $U$ is the Fatou component containing the bov then it is proved that a Fatou component $U'$ is infinitely connected if and only if it lands on $U$, i.e. $f^{k}(U') \subset U$ for some $k \geq 1$. Every other Fatou component is either simply connected or lands on a Herman ring. Further, assuming that the number of critical points in the Fatou set whose forward orbits do not intersect $U$ is finite, we have shown that the connectivity of each Fatou component belongs to a finite set. This set is independent of the Fatou components. It is proved that the Fatou component containing the bov is completely invariant whenever it is forward invariant. Further, if the invariant Fatou component is an attracting domain and compactly contains all the critical values of the function then the Julia set is totally disconnected. Baker domains are shown to be non-existent whenever the bov is in the Fatou set. It is also proved that, if there is a $2$-periodic Baker domain (these are not ruled out when the bov is in the Julia set), or a $2$-periodic attracting or parabolic domain containing the bov then the function has no Herman ring. Some examples exhibiting different possibilities for the Fatou set are discussed. This includes the first example of a meromorphic function with an omitted value which has two infinitely connected Fatou components.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源